
Monoidal logics:
De Morgan negations and classical systems

Monoidal logics were introduced in the work of Peterson (2014a,b, 2015) to analyze the proof theory of
deontic logic. They are inspired by Lambek’s logical understanding of category theory (cf. 1968, 1969 and
Lambek and Scott 1986) and by Lawvere’s (1963) insight that logical systems can be defined as pairs of
adjoint functors. In contrast with Lambek’s work, monoidal logics assume category theory as a foundation.
Basically, the idea is to define logical systems using specific rules and axiom schemata in order to make
explicit the categorical (monoidal) structure of the logics. It starts from the definition of a deductive system,
defined as a collection of formulas together with a collection of equivalence classes of proofs (i.e., deductions
ϕ // ψ) satisfying (1) and (cut) below. In a nutshell, the idea is to define different deductive systems in
such a way that it can easily be proven that i) they are instances of specific monoidal categories and, further,
that ii) their logical connectives are functors with specific properties.

Monoidal logics can be compared to substructural logics (cf. Restall 2000) and, more generally, to display
logics (cf. Goré 1998). Indeed, it is possible to define a translation t from the language of monoidal logics
to the language of display logics such that a proof ϕ // ψ is derivable within specific monoidal deductive
systems if and only if t(ϕ) ` t(ψ) is derivable within their respective display counterparts. One upshot of
this comparison is that monoidal logics can be proven to be weaker and more flexible than substructural
logics. In substructural logics, the elimination of double negation(s) is generally thought to be accompanied
by the satisfaction of the de Morgan dualities (cf. Restall 2000, pp.62-5). However, the elimination of double
negation(s) can be proven to be independent from the de Morgan dualities in monoidal logics.

This result can be understood in light of what might be defined as a classical deductive system. Let
L = {Prop, (, ),⊗, 1,(, ., 0,⊕, ∗} (with Prop is a collection of atomic propositions pi and well-formed
formulas defined recursively as usual). Negations are defined by ∼ ϕ =df ϕ ( ∗ and ¬ϕ =df ϕ . ∗. A
monoidal closed deductive system with co-tensor MCcoM is a deductive system satisfying the following rules
of inference (•/i stands for either ⊗/1 or ⊕/0).

(1)
ϕ // ϕ

ϕ −→ ψ ψ −→ ρ
(cut)ϕ −→ ρ

ϕ // ψ ρ // τ
(t)

ϕ • ρ // ψ • τ
ϕ // ψ • i

(r)
ϕ // ψ

ϕ // i • ψ
(l)

ϕ // ψ

τ // (ϕ • ψ) • ρ
(a)

τ // ϕ • (ψ • ρ)

ϕ⊗ ψ // ρ
(cl)

ϕ // ψ ( ρ

ϕ⊗ ψ // ρ
(cl’)

ψ // ϕ . ρ

A MCcoM is classical if and only if it satisfies (⊕1) and (⊕2).
ϕ⊕ ψ // ¬ψ ( ϕ ϕ⊕ ψ // ∼ ϕ . ψ (⊕1)
¬ψ ( ϕ // ϕ⊕ ψ ∼ ϕ . ψ // ϕ⊕ ψ (⊕2)

A de Morgan negation is usually conceived as a single negation satisfying the elimination of double
negation and the de Morgan dualities. Nonetheless, this notion can be generalized to monoidal logics and,
as such, de Morgan negations can be defined as negations satisfying the elimination of double negations and
the de Morgan dualities (dm1)-(dm4).

¬ψ ⊗ ¬ϕ // ¬(ϕ⊕ ψ) ∼ ψ⊗ ∼ ϕ // ∼ (ϕ⊕ ψ) (dm1)

¬(ϕ⊕ ψ) // ¬ψ ⊗ ¬ϕ ∼ (ϕ⊕ ψ) // ∼ ψ⊗ ∼ ϕ (dm2)

¬ϕ⊕ ¬ψ // ¬(ψ ⊗ ϕ) ∼ ϕ⊕ ∼ ψ // ∼ (ψ ⊗ ϕ) (dm3)

¬(ψ ⊗ ϕ) // ¬ϕ⊕ ¬ψ ∼ (ψ ⊗ ϕ) // ∼ ϕ⊕ ∼ ψ (dm4)

As it happens, classical deductive systems corresponds precisely to deductive systems with de Morgan
negations. Likewise, it corresponds precisely to deductive systems satisfying weak distributivity (a.k.a. linear
distributivity) and the law of excluded middle. However, it can be proven that there are MCcoMs satisfying
the elimination of double negations but that are neither weakly distributive nor classical and, incidentally,
that do not satisfy the de Morgan dualities. From a categorical perspective, classical deductive systems
corresponds to deductive systems in which ⊕ is a right adjoint functor to ⊗. In such a case, there is a
Galois connection between the tensor and the co-tensor. This enables the inter-definition of all the logical
connectives. Our analysis show that such a connection is not a necessary property of monoidal deductive
systems and that there is nothing in the rules governing the behavior of the connectives that implies any
special relationship between ⊗ and ⊕ such as weak distributivity, the de Morgan dualties, (⊕1) or (⊕2).
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