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Two main sorts of logical games.

(1) Truth of formulas in a structure is ex-
pressible by games.

4 and V become choices for proponent
(P).

V and A become choices for opponent
(0).

Winner depends on atomic and negated
atomic formulas.

(2) Provability is expressible by games.

P exhibits a rule with the formula un-
der consideration as its conclusion.

O chooses a premise of that rule, which
becomes the new formula under consid-
eration.

Whoever can’t move loses.

O wins infinite plays.

This talk will be almost entirely about (1).
Semantics rather than deduction.

Games will be 2-player, win-lose games of
perfect information.
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The Curse of Determinacy

If all plays of a game are finite, then the
game is determined.

The logic of such games is just classical logic.
For example, AV —A is valid.
How can one get non-classical logics of games?

e Allow plays of infinite length. (Gale-
Stewart, Martin)

e Require winning strategies to be com-
putable. (Rabin, Japaridze)

e Require winning strategies to be history-
free. (Abramsky, Jagadeesan)

e Require winning strategies to be uni-
form under addition of new options to
games. (Abramsky, Jagadeesan)

e Allow different rules depending on who
moves first. (Abramsky, Jagadeesan)



Complexity of Strategies



Complexity of Strategies
A really playable game is one where



Complexity of Strategies
A really playable game is one where

e cach move is a finite object (e.g., natu-
ral number),



Complexity of Strategies
A really playable game is one where
e cach move is a finite object (e.g., natu-
ral number),
e there is an algorithm deciding, for every
position



Complexity of Strategies
A really playable game is one where

e cach move is a finite object (e.g., natu-
ral number),

e there is an algorithm deciding, for every
position
— whether the play is ended,



Complexity of Strategies
A really playable game is one where

e cach move is a finite object (e.g., natu-
ral number),

e there is an algorithm deciding, for every
position
— whether the play is ended,
— it so, who won,



Complexity of Strategies
A really playable game is one where

e cach move is a finite object (e.g., natu-
ral number),

e there is an algorithm deciding, for every
position
— whether the play is ended,
— it so, who won,
— if not, who is to move next,



Complexity of Strategies
A really playable game is one where

e cach move is a finite object (e.g., natu-
ral number),

e there is an algorithm deciding, for every
position
— whether the play is ended,
— it so, who won,
— if not, who is to move next,
—and whether any proposed move is

legal,



Complexity of Strategies
A really playable game is one where

e cach move is a finite object (e.g., natu-
ral number),

e there is an algorithm deciding, for every
position
— whether the play is ended,
— it so, who won,
— if not, who is to move next,
—and whether any proposed move is

legal,

e and each play ends after finitely many

moves.



Complexity of Strategies
A really playable game is one where
e cach move is a finite object (e.g., natu-
ral number),
e there is an algorithm deciding, for every
position
— whether the play is ended,
— it so, who won,
— if not, who is to move next,
—and whether any proposed move is
legal,
e and each play ends after finitely many
moves.
Rabin showed that, although every such game
has a winning strategy for one of the play-
ers, there need not be a computable winning
strategy.
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A really playable game is one where

e cach move is a finite object (e.g., natu-
ral number),

e there is an algorithm deciding, for every
position
— whether the play is ended,
— it so, who won,
— if not, who is to move next,
—and whether any proposed move is

legal,

e and each play ends after finitely many

moves.

Rabin showed that, although every such game
has a winning strategy for one of the play-
ers, there need not be a computable winning
strategy.

In fact, for each hyperarithmetical set A,
there is a really playable game such that A
is computable from each winning strategy.
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e Classical Logic
e Intuitionistic Logic
e Game Semantics

e Truth
e Provability
e Winning Strategy

e Deterministic algorithm
e Non-deterministic algorithm
e Alternating algorithm

e Fxcluded Middle
e Kripke Schema
e “[orenzen Schema”

Lorenzen Schema: For each formula A,
there is a really playable game (as in Ra-

bin’s theorem) such that A holds iff P has a
winning strategy in that game.
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Other Operations on Games

“Multiplicative” operations first arose from
trying to understand reducibility.

“If you show me how to win G (as P), then
[ can win H (also as P).”

This led to ® and its dual.
Also a version of exponential modality
But linear logic came later.
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Semantics vs. Syntax

Original game semantics agreed with affine
logic on additive sequents, but validated more
multiplicative sequents.

Multiplicative fragment gave all instances of
binary tautologies.

Abramsky and Jagadeesan modified the se-
mantics to get exactly multiplicative linear
logic plus the Mix rule.

=T = A

1A -
Hyland and Ong modified it further to get
exactly multiplicative linear logic.

But the additive fragment no longer works
well.

Taking semantics as primary, we don’t have
good axiomatic systems for game-validity.

Japaridze has deductive systems for various
fragments of computability logic.

But the flavor is still game-like more than
logical.
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Categories

The initial (i.e., free) category with products
and coproducts has objects that look like
finite-length games.

Morphisms 1 — G are winning strategies
for P in G.
Morphisms G — 0 are winning strategies

for O in G.

Morphisms G — H are like reductions, but
with identifications to obtain associativity.

This resembles an important idea of Japaridze:
Don’t require players to move in a particular
order.

But speed doesn’t count.

“Static games”

The precise connection has not yet been worked
out.
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Girard noted that linear logic’s proof rules
for I don’t determine it.

Game semantics has (at least) two natural
versions of |G.

Both have many copies of GG, and P wins if
he wins all copies that are completed.

In one version, P must play the same moves
in any two copies as long as O does.

In the other, the copies are independent.
First version represents a single, re-usable
resource.

Second represents a stream of resources of
the same type.

Japaridze’s examples:
(A® B)F (A) @ (!B)
is valid only in the first version, and
AR!(A— (A® B)) !B
only in the second.



