Proofs and Dialogue : the Ludics view

Alain Lecomte

Laboratoire : “Structures formelles du langage”, Paris 8 Université

February, 2011
Tübingen
with collaboration of Myriam Quatrini
Table of Contents

1. Ludics as a pre-logical framework
 - A polarized framework
 - A localist framework

2. Designs as paraproofs
 - Rules
 - *Daimon* and *Fax*
 - Normalization

3. The Game aspect
 - Plays and strategies
 - The Ludics model of dialogue
Ludics is a theory elaborated by J-Y. Girard in order to rebuild logic starting from the notion of interaction. It starts from the concept of proof, as was investigated in the framework of Linear Logic:

- **Linear Logic** may be polarized (→ negative and positive rules)
- Linear Logic leads to the important notion of proof-net (→ being a proof is more a question of connections than a question of formulae to be proven) → loci
Polarization

Results on polarization come from those on \textit{focalization} (Andréoli, 1992)

- some connectives are \textit{deterministic} and \textit{reversible} (= \textit{negative} ones): their right-rule, which may be read in both directions, may be applied in a deterministic way:

\begin{align*}
&\vdash A, B, \Gamma \\
&\vdash A \otimes B, \Gamma [\otimes] \\
&\vdash A, \Gamma \quad \vdash B, \Gamma [\&] \\
&\vdash A \& B, \Gamma
\end{align*}
the other connectives are non-deterministic and non-reversible (= positive ones) : their right-rule, which cannot be read in both directions, may not be applied in a deterministic way (from bottom to top, there is a choice to be made) :

Example

\[
\begin{align*}
& \vdash A, \Gamma \\
& \vdash B, \Gamma' \\
& \vdash A \otimes B, \Gamma, \Gamma' \quad [\otimes] \\
& \vdash A, \Gamma \\
& \vdash A \oplus B, \Gamma \quad [\oplus_g] \\
& \vdash B, \Gamma \\
& \vdash A \oplus B, \Gamma \quad [\oplus_d]
\end{align*}
\]
The Focalization theorem

- every proof may be put in such a form that:
 - as long as there are negative formulae in the (one-sided) sequent to prove, choose one of them at random,
 - as soon as there are no longer negative formulae, choose a positive one and then continue to focalize it
- we may consider positive and negative “blocks” → synthetic connectives
- convention: the negative formulae will be written as positive but on the left hand-side of a sequent → fork
Hypersequentialized Logic

Formulae:

\[F = O|1|P|(F^\perp \otimes \cdots \otimes F^\perp) \oplus \cdots \oplus (F^\perp \otimes \cdots \otimes F^\perp) | \]

Rules:

- axioms:
 \[\overline{\vdash P, \Delta} \quad \vdash 1, \Delta \quad \overline{\vdash O, \Delta} \]

- logical rules:
 \[\vdash A_{11}, \ldots, A_{1n_1}, \Gamma \ldots \vdash A_{p1}, \ldots, A_{pn_p}, \Gamma \]
 \[\frac{(A_{11}^\perp \otimes \cdots \otimes A_{1n_1}^\perp) \oplus \cdots \oplus (A_{p1}^\perp \otimes \cdots \otimes A_{pn_p}^\perp) \vdash \Gamma}{A_{i1} \vdash \Gamma_1 \ldots A_{in_i} \vdash \Gamma_p} \]
 \[\vdash (A_{i1}^\perp \otimes \cdots \otimes A_{1n_1}^\perp) \oplus \cdots \oplus (A_{p1}^\perp \otimes \cdots \otimes A_{pn_p}^\perp), \Gamma \]

where \(\bigcup \Gamma_k \subset \Gamma^1 \) and, for \(k, l \in \{1, \ldots, p\} \), \(\Gamma_k \cap \Gamma_l = \emptyset \).

- cut rule:
 \[\frac{A \vdash B, \Delta \quad B \vdash \Gamma}{A \vdash \Delta, \Gamma} \]
Remarks

- all propositional variables P are supposed to be **positive**
- formulae connected by the positive \otimes and \oplus are **negative**
 (positive formulae are maximal positive decompositions)
- $\ldots (\ldots \otimes \ldots \otimes \ldots) \oplus (\ldots \otimes \ldots \otimes \ldots) \ldots \oplus (\ldots \otimes \ldots \otimes \ldots)$ is not a restriction because of distributivity
- $((A \oplus B) \otimes C \equiv (A \otimes C) \oplus (B \otimes C))$
Interpretation of the rules

- **Positive** rule :
 1. choose $i \in \{1, \ldots, p\}$ (a \oplus-member)
 2. then decompose the context Γ into disjoint pieces

- **Negative** rule :
 1. nothing to choose
 2. simply enumerates all the possibilities

First interpretation, as **questions** :

- **Positive** rule : to choose a component where to answer
- **Negative** rule : the range of possible answers
The daimon

Suppose we use a rule:

\[
\Gamma \vdash \text{(stop!)}
\]

for any sequence \(\Gamma\), *that we use when and only when we cannot do anything else...*

- the system now “accepts” proofs which are not real ones
- if \((\text{stop!})\) is used, this is precisely because... the process does not lead to a proof!
- \((\text{stop!})\) is a **paralogism**
- the proof ended by \((\text{stop!})\) is a **paraproof**
- cf. (in classical logic) it could give a distribution of truth-values which gives a counter-example (therefore also: *counter-proof*)
A reminder of proof-nets

\[\vdash A \perp \emptyset B \perp, (A \otimes B) \otimes C, C \perp \]

\[\vdash A, A \perp \quad \vdash B, B \perp \]
\[\vdash A \otimes B, A \perp, B \perp \quad \vdash C, C \perp \]
\[\vdash (A \otimes B) \otimes C, A \perp, B \perp, C \perp \]
\[\vdash A \perp, B \perp, (A \otimes B) \otimes C, C \perp \]
\[\vdash A \perp \emptyset B \perp, (A \otimes B) \otimes C, C \perp \]

Alain Lecomte
Proofs and Dialogue: the Ludics view
Ludics as a pre-logical framework
Designs as paraproofs
The Game aspect

A polarized framework
A localist framework

Proofs and Dialogue: the Ludics view
We define a proof structure as any such a graph built only by means of these links such that each formula is the conclusion of exactly one link and the premiss of at most one link.
Criterion

Definition (Correction criterion)

Correction criterion A proof structure is a proof net if and only if the graph which results from the removal, for each \(\& \) link ("par" link) in the structure, of one of the two edges is connected and has no cycle (that is in fact a tree).
Ludics as a pre-logical framework
Designs as paraproofs
The Game aspect

A polarized framework
A localist framework

\[B \perp \varnothing A \perp A \perp B \perp (A \otimes B) \otimes C \perp C \]
Ludics as a pre-logical framework
Designs as paraproofs
The Game aspect

A polarized framework
A localist framework

Alain Lecomte
Proofs and Dialogue: the Ludics view
Loci

Rules do not apply to **contents** but to **addresses**

Example

<table>
<thead>
<tr>
<th>Rule</th>
<th>Contents</th>
<th>Addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>⊢ (e \perp, c)</td>
<td>⊢ (e \perp)</td>
<td>⊢ (e \perp)</td>
</tr>
<tr>
<td>⊢ (e \perp, l)</td>
<td>⊢ (e \perp, c \oplus d)</td>
<td>⊢ (e \perp, c \oplus d)</td>
</tr>
<tr>
<td>⊢ (e \perp, l & (c \oplus d))</td>
<td>⊢ (e \perp)</td>
<td>⊢ (e \perp)</td>
</tr>
<tr>
<td>⊢ (e \perp)</td>
<td>(l & (c \oplus d))</td>
<td>(l & (c \oplus d))</td>
</tr>
</tbody>
</table>
with only loci:

$$
\frac{
\frac{\xi \vdash}{\xi.3.1 \vdash \xi 1} \\
\vdash \xi 1, \xi 2
}{\vdash \xi 1, \xi 2, \xi 3} \\
\frac{\vdash \xi 1, \xi 2}{\vdash \xi 1, \xi 2, \xi 3}
$$

$$
\frac{
\frac{\xi \vdash}{\xi.3.2 \vdash \xi 1} \\
\vdash \xi 1, \xi 2
}{\vdash \xi 1, \xi 2, \xi 3} \\
\frac{\vdash \xi 1, \xi 2}{\vdash \xi 1, \xi 2, \xi 3}
$$
Rules

Definition

positive rule

\[\ldots \quad \xi \star i \vdash \Lambda_i \quad \ldots \]
\[\vdash \xi, \Lambda \quad (+, \xi, \Lambda) \]

- \(i \in I \)
- all \(\Lambda_i \)'s pairwise disjoint and included in \(\Lambda \)

Definition

negative rule

\[\ldots \quad \vdash \xi \star J, \Lambda_J \quad \ldots \]
\[\xi \vdash \Lambda \quad (-, \xi, \Lambda J) \]
daimon

- Dai

$\text{Dai} \vdash \text{Λ}$

- it is a **positive** rule (something we choose to do)
- it is a **paraproof**
Is there a identity rule?

- No, properly speaking (since there are no longer atoms!)
- two loci cannot be identified
- there only remains the opportunity to recognize that two sets of addresses correspond to each other by displacement: \(Fax \)

\[
Fax_{\xi, \xi'} = \frac{\ldots Fax_{\xi_{i_1}, \xi'_{i_1}} \ldots}{\ldots \xi' \ast i \vdash \xi \ast i \ldots} \quad (\ast \xi'_{J_1} \ast \ldots) \\
\frac{\ldots \vdash \xi \ast J_1, \xi' \ldots}{\xi \vdash \xi'} \quad (\ast \xi, P_f(\mathbb{N}))
\]
Infinite proofs

- \mathcal{Fax}... is **infinite**! (cf. the directory $\mathcal{P}_f(\mathbb{N})$)
- it provides a way to explore any “formula” (a tree of addresses) at any depth
Definition

A design is a tree of forks $\Gamma \vdash \Delta$ the root of which is called the base (or conclusion), which is built only using:

- daimon
- positive rule
- negative rule
Example

\[
egin{array}{ll}
011 & 012 \rightarrow 02 \\
031 & 033 \rightarrow 01 \\
0 & \rightarrow (+,<>\{0\})
\end{array}
\]

- a negative step gives a fixed focus and a set of ramifications,
- on such a basis, a positive step chooses a focus and a ramification
An illustration

- **positive** rule: a question (where will you go next week?)
- **negative** rule: a scan of possible answers is provided, (Roma and Naples or Rome and Florence)
- in case of the choice 1: **positive** rule on the base ”Roma”, new questions (with whom? and by what means?)
- in case of choice 2: **positive** rule on the base ”Florence”, new questions (with whom? and how long will you stay?)
Normalization

- no explicit cut-rule in Ludics
- but an implicit one: the meeting of same addresses with opposite polarity
Example

\[
\begin{align*}
\vdash \xi_{11}, \xi_{12} & \\
\vdash \xi_{21} & \\
\vdash \xi_{22}, \xi_{23} & \\
\vdash \xi_{11} & \\
\vdash \xi_{2} & \\
\vdash \xi_{12} & \\
\vdash \xi & \\
\vdash \xi & \\
\end{align*}
\]
Ludics as a pre-logical framework
Designs as paraproofs
The Game aspect

Rules
Daimon and *Fax*
Normalization

\[
\begin{align*}
\vdash \xi_{11}, \xi_{12} & \quad \vdash \xi_{11} & \vdash \xi_{1}, \xi_{2} \\
\xi_{1} & \vdash & \vdash \xi_{11} & \vdash \xi_{2} & \vdash \xi_{21} & \vdash \xi_{22}, \xi_{23} \\
& & \vdash \xi_{1}, \xi_{2} & & \vdash \xi_{2} &
\end{align*}
\]
which is rewritten in:

\[
\vdash \xi_{12} \vdash \xi_{12}, \xi_{11} \quad \vdash \xi_{11} \vdash \xi_{2} \quad \vdash \xi_{21} \quad \vdash \xi_{22}, \xi_{23}
\]

And so on ...
When the interaction meets the *daimon*, it converges. The two interacting designs are said **orthogonal**
Otherwise the interaction is said **divergent**.
Normalization, formally - 1- Closed nets

Namely, a **closed net** consists in a cut between the two following designs:

\[
\begin{align*}
\mathcal{D} & \quad \mathcal{E} \\
\vdash \xi & \quad \xi \vdash (\xi, \mathcal{N}) \\
\end{align*}
\]
Orthogonality

- if κ is the daimon, then the normalized form is:

$$
\vdash \quad \kappa
$$

(this normalised net is called dai)

- if $\kappa = (\xi, I)$, then if $I \notin \mathcal{N}$, normalization fails,

- if $\kappa = (\xi, I)$ and $I \in \mathcal{N}$, then we consider, for all $i \in I$ the design \mathcal{D}_i, sub-design of \mathcal{D} of basis $\xi \star i \vdash$, and the sub-design \mathcal{E}' of \mathcal{E}, of basis $\vdash \xi \star I$, and we replace \mathcal{D} and \mathcal{E} by, respectively, the sequences of \mathcal{D}_i and \mathcal{E}'.
In other words, the initial net is replaced by:

\[
\begin{align*}
&D_{i_1} \quad \vdash \quad \mathcal{E}' \quad \vdash \quad D_{i_n} \\
&D_{i_1} \quad \vdash \quad \xi \star i_1 \quad \vdash \quad \xi \star i_1, \ldots, \xi \star i_n \quad \xi \star i_n \vdash
\end{align*}
\]

with a cut between each \(\xi \star i_j \vdash\) and the corresponding "formula" \(\xi \star i_j\) in the design \(\mathcal{E}'\)
An example of normalization which does not yield *dai*

\[\mathcal{F}ax_{\xi \vdash \rho} \text{ against a design } \mathcal{D} \text{ of basis } \vdash \xi \]

Let \(\mathcal{D} \) the design:

\[
\begin{array}{c}
\mathcal{D}_1 \\
\xi \star 1 \vdash \quad \mathcal{D}_2 \\
\xi \star 2 \vdash \\
\vdash \xi
\end{array}
\]

Normalization selects first the slice corresponding to \(\{1, 2\} \), after elimination of the first cut, it remains:

\[
\begin{array}{c}
\mathcal{D}_1 \\
\xi \star 1 \vdash \\
\mathcal{D}_2 \\
\xi \star 2 \vdash \\
\mathcal{F}ax \\
\rho \star 1 \vdash \xi \star 1 \\
\mathcal{F}ax \\
\rho \star 2 \vdash \xi \star 2 \\
\vdash \xi \star 1, \xi \star 2, \rho
\end{array}
\]

and finally:

Alain Lecomte
Proofs and Dialogue : the Ludics view
where, in D'_1 and D'_2, the address ξ is systematically replaced by ρ.

D'_1 \[\rho \ast 1 \vdash \] D'_2 \[\rho \ast 2 \vdash \] $\vdash \rho$
The separation theorem

Theorem

If $D \neq D'$ then there exists a counterdesign E which is orthogonal to one of D, D' but not to the other.

Hence the fact that: the objects of ludics are completely defined by their interactions

- a design D inhabits its *behaviour* (= like its *type*)
- a *behaviour* is a set of designs which is stable by bi-orthogonality ($G = G^\perp\perp$)
The game aspect

A slight change of vocabulary:
step in a proof action
positive step positive action $(+, \xi, I)$
negative step negative action $(-, \zeta, J)$
branch of a design play in a game chronicle
design strategy
design (dessein) as a set of chronicles
Example

\[
\begin{align*}
011 \vdash & \quad 012 \vdash 02 \\
\quad \vdash & \quad 01, 02 \\
\quad \vdash & \quad 01, 03 \\
0 \vdash & \quad (+, <>, \{0\}) \\
\vdash <&> \\
\end{align*}
\]

Example

\[
(+, <>, 0), (−, 0, \{1, 2\}), (+, 01, \{1, 2\}) \\
(+, <>, 0), (−, 0, \{1, 3\}), (+, †)
\]
Dialogue in Ludics

The archetypal figure of interaction is provided by two intertwined processes the successive times of which, alternatively positive and negative, are opposed by pairs.

<table>
<thead>
<tr>
<th>Ludics</th>
<th>Dialogue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive rule</td>
<td>performing an intervention</td>
</tr>
<tr>
<td></td>
<td>or committing oneself (Brandom)</td>
</tr>
<tr>
<td>Negative rule</td>
<td>recording or awaiting</td>
</tr>
<tr>
<td></td>
<td>or giving authorization</td>
</tr>
<tr>
<td>Daïmon</td>
<td>giving up or ending an exchange</td>
</tr>
</tbody>
</table>
Ludics as a pre-logical framework
Designs as paraproofs
The Game aspect

Plays and strategies
The Ludics model of dialogue

\[\vdash P, \Delta \]

I commit myself to speak of \(P_1, P_2, P_3 \) provided by interlocutor

among authorizations provided by interlocutor
The daimon rule

\[\vdash \top \]

\[\vdash \Delta \]

- In proof reading this represents the fact to abandon your proof search or your counter-model attempt.
- This represents the fact to close a dialogue (by means of some explicite signs: “well”, “OK”, . . . or implicitly because it is clear that an answer was given, an argument was accepted and so on . . .).
Convergence and divergence

- Convergence in dialogue holds as long as commitments of one speaker belong to authorizations provided by the other speaker (pragmatics: “Be relevant!” replaced by “Keep convergent!”)
- orthogonality = private communication
- non-orthogonality: normalization may yield side effects: public results of communication
Example of two elementary dialogues:

Example

The first one is well formed:
- Have you a car?
- Yes,
- Of what mark?

\[
Fax_{\xi_{010}, \sigma} \\
\xi_{010} \vdash \sigma \\
\vdash \xi_{01}, \sigma \\
\{\emptyset, \{1\}\} \\
\xi_0 \vdash \sigma \\
\vdash \xi, \sigma \quad \text{VS} \\
\vdash \xi_{010} \\
\xi_{01} \vdash \xi_0 \\
\xi \vdash
\]

\[\xi \vdash \]
Examples

The locus σ is a place for recording the answer:

Example

- Have you a car?
- Yes,
- Of what mark?
- Honda.

$$\text{Fax}_{\xi_{010},\sigma}$$

\[\xi_{010} \vdash \sigma\]

\[\vdash \xi_{01}, \sigma\]

\[\xi_0 \vdash \sigma\]

\[\vdash \xi, \sigma\]

VS

$$\xi_{010k} \vdash \xi_{010}$$

$$\xi_{01} \vdash \xi_0$$

$$\xi \vdash$$
The interaction reduces to:

Example

\[
\sigma k \vdash \\
\vdash \sigma
\]

The mark of the car is “Honda”.
This “assertion” is recorded by the speaker.

It is the function of \(F\text{ax} \)* to interact in such a way that the design anchored on* \(\xi_{010} \)* is transferred to the address \(\sigma \), *thus* providing the answer.*
The second dialogue is ill-formed: - **Have you a car?**
- * **No, I have no car**
- * **Of what mark?**

\[
Fax_{\xi_{010}, \sigma} \\
\xi_{010} \vdash \xi_{01}, \sigma \\
\vdash \xi_{01}, \sigma \\
\vdash {\{1\}} \\
\xi_0 \vdash \sigma \\
\vdash \xi, \sigma
\]

\[
Fax_{\xi_{010}, \sigma} \\
\xi_{010} \vdash \sigma \\
\vdash \xi_{010}, \sigma \\
\vdash \xi_{01}, \sigma \\
\vdash {\emptyset, \{1\}} \\
\xi_0 \vdash \sigma \\
\vdash \xi, \sigma
\]

\[
\xi_0 \vdash \sigma \\
\vdash \xi_{010}, \sigma \\
\vdash \xi_{01}, \sigma \\
\vdash {\emptyset, \{1\}} \\
\xi_0 \vdash \sigma \\
\vdash \xi, \sigma
\]
Modelling dialogue

<table>
<thead>
<tr>
<th>Intervention of S</th>
<th>Current state</th>
<th>Intervention of A</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>S_1</td>
<td>A_2</td>
</tr>
<tr>
<td></td>
<td>$E_1 = S_1$</td>
<td></td>
</tr>
<tr>
<td>$S_2 = [E_1, A_2]$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_3</td>
<td>$E_2 = [E_1, S_3]$</td>
<td>A_2</td>
</tr>
<tr>
<td>S_3</td>
<td>$E_3 = [E_2, S_3]$</td>
<td>A_2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Rebuilding Logic

- behaviours
- operations on behaviours

Example

Additives:
- if G and H are two disjoint negative behaviours:
 \[G \& H = G \cap H \]
- if they are positive $G \oplus H = G \sqcup H (= (G \cup H)\perp\perp)$
Rebuilding Logic-2

Example

Multiplicatives:

- Let us take two positive designs \mathcal{D} and \mathcal{D}' starting from respectively $(+, \xi, I)$ and $(+, \xi, J)$, we may make a new design starting from $(+, \xi, I \cup J)$. The problem is: what to do with $I \cap J$?
 - we may introduce a priority \rightarrow non-commutative \otimes
 - or we may stop those branches by $\mathcal{D}ai$ (a special design ended by \dagger) $\rightarrow \otimes$
Further developments

- K. Terui’s c-designs: **computational designs**
 - from *absolute* addresses to relative addresses: *variables* of designs
 - ramifications replaced by *named actions with an arity*
 - finite objects: *generators*, in case of infinite designs
 - c-designs are *terms* which generalize λ-terms (simultaneous and parallel reductions via several channels)
 - inclusion of *exponentials* (authorizes replay)

The introduction of variables allows to deal with designs with variables which correspond to designs with partial information (the whole future may stay unknown)
Conclusion

- usually, the logician lives in a dualist universe:
 - proof vs (counter) - model
- with ludics, he lives in a monist universe
 - proof vs counter - proof
- proofs (dessins) and strategies (desseins) are two faces of the same objects
- formulae (= types) are behaviours
- behaviours can be decomposed by means of $\&$, \oplus, \otimes, thus providing the analogues of formulae of Linear (or Affine?) Logic
- no atoms: such decompositions may be infinite!
- this opens the field to considering very ancient conceptions of Logic (Nāgārjuna) for which there are no grounded foundations of our assertions
Conclusion

- usually, the logician lives in a **dualist** universe:
 - proof *vs* (counter) - model
- with ludics, he lives in a **monist** universe
 - proof *vs* counter - proof
- proofs (**dessins**) and strategies (**desseins**) are two faces of the same objects
- formulae (= types) are **behaviours**
- behaviours can be decomposed by means of &, ⊕, ⊗, thus providing the analogues of formulae of Linear (or Affine?) Logic
- **no atoms** : such decompositions may be **infinite**!
- this opens the field to considering very ancient conceptions of Logic (**Nāgārjuna**) for which there are no grounded foundations of our assertions
Conclusion

- usually, the logician lives in a dualist universe:
 - proof vs (counter) - model
- with ludics, he lives in a monist universe
 - proof vs counter - proof
- proofs (dessins) and strategies (desseins) are two faces of the same objects
- formulae (= types) are behaviours
 - behaviours can be decomposed by means of $\&$, \oplus, \otimes, thus providing the analogues of formulae of Linear (or Affine?) Logic
 - no atoms: such decompositions may be infinite!
 - this opens the field to considering very ancient conceptions of Logic (Nāgārjuna) for which there are no grounded foundations of our assertions
Conclusion

usually, the logician lives in a dualist universe:

- proof vs (counter) - model

with ludics, he lives in a monist universe

- proof vs counter - proof

proofs (dessins) and strategies (desseins) are two faces of the same objects

formulae (= types) are behaviours

behaviours can be decomposed by means of & , ⊕ , ⊗ , thus providing the analogues of formulae of Linear (or Affine?) Logic

no atoms : such decompositions may be infinite!

this opens the field to considering very ancient conceptions of Logic (Nāgārjuna) for which there are no grounded foundations of our assertions
Conclusion

- usually, the logician lives in a **dualist** universe:
 - proof *vs* (counter) - model
- with ludics, he lives in a **monist** universe
 - proof *vs* counter - proof
- proofs (**dessins**) and strategies (**desseins**) are two faces of the same objects
- **formulae** (= **types**) are **behaviours**
- behaviours **can be decomposed** by means of &, ⊕, ⊗, thus providing the analogues of formulae of Linear (or Affine?) Logic
- **no atoms** : such decompositions may be **infinite**!
- this opens the field to considering very ancient conceptions of Logic (**Nāgārjuna**) for which **there are no grounded foundations of our assertions**
Conclusion

- usually, the logician lives in a **dualist** universe:
 - proof vs (counter) - model
- with ludics, he lives in a **monist** universe
 - proof vs counter - proof
- proofs (**dessins**) and strategies (**desseins**) are two faces of the same objects
- **formulae** (= **types**) are **behaviours**
- behaviours **can be decomposed** by means of $\&, \oplus, \otimes$, thus providing the analogues of formulae of Linear (or Affine?) Logic
- **no atoms**: such decompositions may be **infinite**!
- this opens the field to considering very ancient conceptions of Logic (**Nāgārjuna**) for which **there are no grounded foundations of our assertions**