The Conception of Validity in Dialogical Logic

Dr. Helge Rückert University of Mannheim Germany

rueckert@rumms.uni-mannheim.de

http://www.phil.uni-mannheim.de/fakul/phil2/rueckert/index.html

Workshop "Proof and Dialogues" Tübingen February 2011

Playing chess against Carlsen and Anand

Board 1:

White: Magnus Carlsen (Norway, World No. 1) Black: Helge (a *patzer*, more or less)

Board 2:

White: Helge Black: Viswanathan Anand (India, World No. 2)

Helge will score 1/2 against the two best players in the world!

How?

Copycat strategy:

Copy the opponents' moves and make them indirectly play against each other

Dialogical Logic as a Semantic Approach in Logic

Semantic approaches

Denotational/referential

Use-based

approaches

(f.e. model theory)

approaches

A broadly Fregean/Wittgensteinian(I) picture of language and meaning A broadly Wittgensteinian(II) picture of language and meaning

Use-based semantic approaches

Proof-theoretic approaches (f.e. Natural Deduction) Game-theoretic approaches (f.e. **Dialogical Logic**)

Rules how to use expressions in proofs

Rules how to use expressions in language games

A very Short Presentation of Dialogical Logic

- Two players, the proponent (P) and the opponent (O), play a game about a certain formula according to certain rules
- P begins with the initial thesis
- The rules are divided into:

Structural rules

(they determine the general course of the game)

Particle rules

(they determine how formulas, containing the respective particles, can be attacked and defended)

- Each play is won by one player and lost by the other
- Truth is defined in terms of the existence of a winning strategy for **P**

The Particle Rules

	Attack	Defence
٦α	α	\otimes
		(No defence, only counterattack possible)
α∧β	?L(eft)	α
	?R(ight)	β
	(The attacker chooses)	
α∨β	?	α
		β
		(The defender chooses)
$\alpha { ightarrow} eta$	α	β
∀ρα	?c	α [c/ρ]
	(The attacker chooses)	
∃ρα	?	α [c/ρ]
		(The defender chooses)

Remarks:

- The particle rules are player independent
- Attacks and defences are always less complex than the attacked formula

 \Rightarrow Plays unavoidably reach the atomic level

Question: What happens at the atomic level?

Digression: Hintikka's GTS

Up to this point there are no essential differences between Dialogical Logic and Hintikka's GTS (Game-Theoretical Semantics).

But:

In GTS the games are always played given a certain model (and the players know about the model!): Atomic formulas are evaluated according to the model and the result of a play can be accordingly determined.

GTS:

- Game-theoretic semantics for the logical connectives
- Model-theoretic semantics for the atoms
- ⇒ GTS is a combination of a game-theoretic and a model-theoretic approach!

Validity in GTS:

For every model there is a winning strategy (for the first player)

Question:

So, what's the point of game-theoretic approaches in logic? Isn't all this just a reformulation of well known things using games talk?

Answer:

Yes, indeed.

So far...

But:

The games approach opens up new possibilities, especially the transition to **games with imperfect or incomplete information**

Digression continued: Hintikka's Independence Friendly Logic

Main idea:

When concerned with formulas with nested quantifiers, a player having to chose how to attack or defend a quantifier, might lack information about how the other player attacked or defended another quantifier earlier on. In this sense the second quantifier is independent from the first.

Slash notation: $\forall x(\exists y/\forall x) R(x,y)$

Then only a uniform strategy for choosing y is possible.

Consequently: $\forall x(\exists y/\forall x) \ R(x,y) \Leftrightarrow \exists y \forall x \ R(x,y)$

But:

The expressive power of IF logic exceeds that of firstorder logic.

For example: $\forall x \exists y \forall z (\exists w / \forall x) R(x,y,z,w)$

Dialogical Logic and the Formal Rule

What happens at the atomic level in Dialogical Logic?

The distinguishing feature of Dialogical Logic is the socalled formal rule:

Formal rule:

O is allowed to state atomic formulas whenever he wants.
P is only allowed to state an atomic formula if O has stated this atomic formula before

The deeper motivation of this rule can best be explained with a transition to games with incomplete information:

Suppose that **P** lacks information about the atomic level. Let's say that there are rules about how to attack and defend atomic formulas, but **P** doesn't know how they look like. Thus, he also doesn't know which atomic formulas yield a win or a loss. Two cases:

- O states an atomic formula
 P is unable to attack as he lacks information about how such an attack looks like
- 2) P states an atomic formula
 O attacks it and P is unable to react as he lacks information about how a defense looks like

Question:

Is it still possible for **P** to have a winning strategy?

Answer:

Yes! Because of a copycat strategy.

If **O** has already stated an atomic formula before, **P** is safe when stating this atomic formula himself as **O** can't successfully attack because he then indirectly attacks himself. (If **O** attacks, **P** can copy this attack, and if **O** then defends against the attack, **P** can copy the defense etc etc.) So, in this situation **P** can never loose.

This idea is captured by the formal rule.

Validity in Dialogical Logic

The standard conception (validity as general truth):

Validity as truth in every model

Or: Validity as the existence of a winning strategy given any model

The dialogical conception (validity as formal truth):

Validity as the existence of a winning strategy despite lacking information about the atomic level

Or: Validity as the existence of a winning strategy when the formal rule is in effect

The Conception of Meaning in Dialogical Logic

- Particle rules
 - ⇒ Meaning of the logical connectives
 (local meaning)
 How to attack and defend
- Particle rules + structural rules (without the formal rule)
 - ⇒ Meaning of propositions
 (global meaning)
 How to play games
- Formal rule
 - ⇒ Making the plays independent of the meaning of the atoms (transition to logic!)

Plays vs. Strategies

- Level of plays

 \Rightarrow Game rules

(How to play?)

Meaning is constituted by the game rules

- Level of strategies

⇒ Strategic rules
 (How to play well? Does a winning strategy exist?)

Concepts like **truth** and **validity** are defined at the level of strategies

Strategic Tableaux

- Procedure to determine for which formulas there exists a winning strategy
- They result from the level of plays

(O)-cases	(P)-cases	
(Ο)α∨β	(P) α∨β	
$<(\mathbf{P})?>(\mathbf{O})\alpha <(\mathbf{P})?>(\mathbf{O})\beta$	<(O)?> (P)α, <(O)?> (P)β	
(Ο)α∧β	(Ρ)α∧β	
<(P)?L> (O)α, <(P)?R> (O)β	<(O)?L>(P) α <(O)?R>(P) β	
(Ο)α→β	(Ρ)α→β	
(P)α, <(P)α> (O)β	(Ο)α, (Ρ)β	
(Ο) <i>¬</i> α	(Ρ)¬α	
(Ο)∀ρα	(Ρ)∀ρα	
<(P)? _c > (O)α[c/ρ] (c does not need to be new)	<(O)? _c > (P)α[c/ρ] (c is new)	
(Ο)∃ρα	(Ρ)∃ρα	
 <(P)?> (O)α[c/ρ] (c is new)	<(O)?> (P) α [c/ ρ] (c does not need to be new)	

Concluding Remarks: Proofs and Dialogues

- Dialogical Logic is NOT a proof-theoretic approach
- A dialogue is NOT a proof
- In a dialogue **P** does NOT try to prove the initial formula
- If **P** wins he has NOT proved the initial formula