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Introduction

By standard semantics we mean classical model-theoretic semantics in the tradi-

tion of Tarski as well as intuitionistic and proof-theoretic semantics in the BHK

(Brouwer-Heyting-Kolmogorov) tradition and in the proof-theoretic tradition of Dum-

mett, Lorenzen, Martin-Löf and Prawitz1. Both the classical and the intuitionistic /

proof-theoretic traditions rest on certain fundamental assumptions which will be crit-

icized in this paper and will be opposed to an alternative variant of proof-theoretic

semantics based on different ideas. The three fundamental assumptions criticized are

the following:

I. The categorical is conceptually prior to the hypothetical — the priority of the

categorical over the hypothetical

II. Consequence is defined as the transmission of a basic categorical concept from

the premisses to the conclusion — the transmission view of consequence

III. Consequence means the same as correctness of inference — the identification of

consequence and correctness of inference.

∗This paper was written during a research stay at IHPST Paris supported by the Fondation Mai-

son des Sciences de l’Homme, while the author was on sabbatical leave financed by the Deutsche
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German ANR/DFG project ”Hypothetical reasoning” (DFG grant Schr275/16-1). After the Uppsala

meeting, its results have been discussed at seminars at IHPST Paris, at the University of Tübingen

and at conferences on “The nature of logical consequence” (Dubrovnik 2010) and on “Anti-realistic

notions of truth” (Siena 2010). I am grateful to the organizers and participants of these seminars and

conferences, as well as to Sten Lindström, an anonymous referee, and Luca Tranchini for many helpful

comments and suggestions for improvement.

1For the term and the notion ‘proof-theoretic semantics’ see [24].
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As an alternative view, we propose a variant of proof-theoretic semantics according to

which

I*. The hypothetical is conceptually prior to the categorical

II*. Consequence is a primitive concept which is not explained as the transmission of

categorical truth or canonical provability

III*. Consequence is a basic semantical notion which does not necessarily, and in fact

not always, coincide with correctness of inference.

1. Standard notions of consequence: The first two dogmas

It is important to distinguish between formal and material consequence. Formal conse-

quence is logical consequence, which is material consequence for every ‘material’ base.

In the model-theoretic case this material base is a structure or interpretation, which

says what the domain of reasoning is, and which meaning the non-logical signs have.

In the proof-theoretic case it is the notion of an atomic proof system which generates

the atomic truths. In the general intuitionistic case it is the notion of an elementary

construction that validates atomic sentences. If we denote material consequence with

respect to a material base B by |=B, then logical or formal consequence, denoted by

|=, would be defined by

A |= B =def (∀B) A |=B B . (1)

Here and in the following, with a few exceptions, we assume for simplicity that conse-

quences have only a single sentence in the antecedent2. Therefore, the basic concept to

be explained is that of material consequence ‘|=B’. A (material) statement of the form

A |=B B will also be called consequence statement or hypothetical judgement. The dif-

ference between classical model-theoretic semantics and intuitionistic or proof-theoretic

semantics is a difference at the level of material consequence.

In classical model-theoretic semantics, where B is a structure M, material conse-

quence A |=M B is explained as

A |=M B =def (|=M A ⇒ |=M B) , (2)

where “ ⇒ ” denotes ordinary (material) implication and “|=M A” means that A

holds in M, i.e. that M is a model of A. “|=M A” is defined in the usual way along

the lines of Tarski. If we consider “|=M A” to be a categorical concept (the truth of

A with respect to a structure) and A |=M B a hypothetical concept (the hypothetical

2This is just a matter of abbreviation, dispensing us with considering sets or multisets or sequences

on the left of the consequence sign. The necessary adjustments needed can easily be carried out by

the reader.
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validity of B given the assumption A [again with respect to a structure]), then (2)

defines the hypothetical concept of (material) consequence in terms of the categorical

concept of truth [with respect to a structure M]. Therefore, with respect to the order of

explanation, the categorical concept of truth comes first, and the hypothetical concept

of consequence comes second. Furthermore, the way the hypothetical is defined in

terms of the categorical can be expressed as the transmission of the categorical (i.e.,

truth) from the antecedent (= left side) of the consequence statement to its consequent

(= right side). This is exactly what the implication “ ⇒ ” says: If the left side is true

then so is the right side. Therefore, in the classical model-theoretic case, the first

two dogmas: (I) the priority of the categorical over the hypothetical, and (II) the

transmission view, figure prominently in the definition of consequence.

In intuitionistic and proof-theoretic semantics — in the following subsumed under

the heading constructive semantics — the notion of truth is replaced with the notion

of construction or proof. There are various forms of this semantics, from different

forms of the BHK interpretation of logical constants over Kleene’s realizability inter-

pretation, the Curry-Howard interpretation, the meaning explanations in Martin-Löf’s

type theory, and Lorenzen’s admissibility interpretation to Dummett’s and Prawitz’s

proof-theoretic notions of validity. In all these variants, the notion of a hypothetical

judgement is explained in terms of a constructive procedure that transforms a construc-

tion of the antecedent into a construction of the consequent. If we denote by C |=S A

the fact that C is a construction or proof of A with respect to the atomic base S, we

can represent their notion of material consequence (i.e., consequence with respect to

S) by the following definition:

A |=S B =def (∃f)(∀C)(C |=S A ⇒ f(C) |=S B) , (3)

in words: B follows from A (w.r.t. S) if we can find a (constructive) transformation

f that associates with every construction or proof C of A a construction or proof f(C)

of B.

Compared to the classical (model-theoretic) case this definition is more involved:

We do not merely use (material) implication “ ⇒ ”, but require in addition the ex-

istence of a constructive transformation (function) that delivers a construction of the

consequent given an arbitrary construction of the antecedent of the hypothetical judge-

ment. This difference is, of course, crucial, as it makes the intuitionistic or proof-

theoretic notion a constructive one, compared to the classical case, which just relies

on the given intuitive meaning of implication “ ⇒ ” without caring about how the

relationship between antecedent and consequent of a hypothetical judgement is estab-

lished. This also gives the constructive notion of consequence a natural epistemological

rendering, which is a basic ingredient of intuitionism.

However, as far as our first two dogmas are concerned, there is not so much difference
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to the model-theoretic approach. In constructive semantics the categorical concept

C |=S A comes first, and the hypothetical concept A |=S B is, according to (3),

explained as the transmission of the categorical concept from the antecedent A to

the consequent B. Definition (3) uses the notion of construction as an additional

parameter, but this does not change the general picture. Both the classical and the

constructivist approaches to semantics rely on the priority of the categorical over the

hypothetical and on the transmission view of consequence, and as these two conceptions

of semantics may be called “standard semantics”, it is justified to speak of two dogmas

of standard semantics [20].

2. Consequence and correctness of inference: The third dogma

What is the reason for starting with the categorical concept (truth / proof) and define

the hypothetical concept of consequence as the transmission of the categorical one?

This is not too difficult to see. If by reasoning we understand a chain of inferences that

proceeds stepwise from premisses to conclusion, then, so one might argue, our notion

of consequence should be such that all and only correct inferences are rendered correct.

Now an inference is correct if it leads from correct premisses to a correct conclusion.

The easiest way of incorporating this into a notion of consequence is to define a correct

consequence statement as something that leads from a correct statement to a correct

statement. In fact, standard proof-theoretic semantics comes close to such a definition.

Now in the classical case, we do not define consequence in terms of inference. However,

as soon as we deal with inference, we (at least implicitly) identify consequence and the

correctness of inference in the sense that both notions have the same definiens.

If we define the correctness of an inference

A

B

classically, we require that by passing from A to B we stay in the realm of truth, i.e.,

we require what is expressed by the right side (the definiens) of (2). If we define the

correctness of this inference constructively, we require that by passing from A to B

we are applying a constructive transformation or function that gives us a construction

of B out of a construction of A, i.e., we require what is expressed by the right side

(the definiens) of (3). Therefore, in both the classical and the constructive case con-

sequence is defined in exactly the same way in which the correctness of an inference

is defined. What differs between the classical and the constructive case is the order

of explanation. In the classical case the semantical notion of consequence comes first,

and the correctness of inference is explained by reference to this semantical notion: An

inference is correct, if it follows a correct consequence. In the constructive case the

epistemological notion of inference comes first, and a correct consequence is explained

by reference to this epistemological notion: A consequence is correct, if it represents a
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correct inference step. In both cases these two notions coincide. This is not surprizing

at all. It simply means that for inferences to be drawn in a correct way, it is necessary

and sufficient that they accord to the semantics of the expressions involved.

We call this the third dogma of standard semantics : The identification of conse-

quence with the correctness of inference. Note that we do not speak of the identification

of consequence with correct inference, as this would conflate a semantical notion (con-

sequence) with an epistemic act (inference), but of consequence with the correctness

of inference, the latter being a semantical property of inferences.

Altogether, without mentioning the atomic base or structure, and without men-

tioning constructive transformations, the basic tenet of standard semantics can be

paraphrased as

A |= B := (|= A ⇒ |= B) =: (the inference
A

B
is correct)

where in the middle we have the joint definiens of the notions on the left and on the

right side. As we do not dispute the definition on the right

(the inference
A

B
is correct) := (|= A ⇒ |= B) ,

for us the critical fundamental assumption of standard semantics, which will be ques-

tioned in the rest of this paper, is

A |= B := (|= A ⇒ |= B) . (4)

3. Consequence as a basic semantical concept

The alternative conception propagated here is to break up the identification (4) and

keep the concept of consequence (A |= B) separate from the concept of correctness of

inference or transmission of truth (|= A ⇒ |= B). Hypothetical consequence (A |= B)

will be defined directly without reference to categorical truth or validity |= A, so the

hypothetical concept will be prior to the categorical concept, which means that the first

dogma of standard semantics is given up. In fact, it will be reversed, as the concept

of categorical truth or validity |= A will become a limiting case of the hypothetical

concept A |= B, viz. the case where the antecedent is lacking. The second dogma,

the transmission view of consequence, is given up as well. The categorical concept of

truth or validity is no longer available prior to consequence, and there will be no other

concept whose transmission would define consequence. The notion of transmission or

transformation does not play a role in the definition of consequence any more.

Giving up (4) as a definitional equation and defining consequence independently,

means that we may ask whether what in (4) is forced by definition is in fact valid, i.e.,

whether the biconditional

A |= B ⇔ (|= A ⇒ |= B) (5)
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holds. This can, of course, not be answered in general, but will depend on our domain

of reasoning. So instead of (5) we might ask whether with respect to a specific material

base B

A |=B B ⇔ (|=B A ⇒ |=B B) (6)

holds.

Now what should a material base B look like for (6) not to hold? Should we not

expect our base always be such as to validate (6), since the most natural expectation

is that consequence ensure correct inference? We shall give counterexamples later on.

First we have to elucidate what A |=B B should mean.

We define A |=B B by means of certain rules or inference principles which govern

the meaning of the terms involved. In this sense the definition of the semantical

concept A |=B B is inferential. However, these semantical rules, also called “rules of

consequence”3 are to be distinguished from inferential principles justified as correct

(|=B A ⇒ |=B B). In particular, the notion of correctness of inference is not

presupposed in the inferential definition of A |=B B, which means that the third

dogma is given up as well.

3.1. The ‘material’ base generalized: Clausal definitions

Normally the material base of consequence deals with the atomic case. In classical

model-theoretic semantics this would be a structure which determines which atomic

sentences are valid. In constructive semantics it would be elementary constructions

or proofs for atomic sentences, e.g. atomic systems in Prawitz’s [14] sense. Starting

from atomic sentences, logically complex sentences are built up by means of logical

operators. The complex sentences are then valid or invalid according to certain meaning

explanations (truth-functional or constructive, respectively) for the logical operators.

This presupposes that there is a clearcut distinction between the atomic and the

complex sentences. In standard semantics this is given by the syntax of sentences.

Certain sentences are defined as atomic, whereas others are logically complex, simply

because they contain logical operators. The distinction between atomic and non-atomic

is ‘hardwired’ into the formalism, which means that the material base, which may vary,

only concerns the non-logical aspects.

This may be a plausible way of proceeding, if our ultimate goal is the elucidation

of logical (i.e., formal) consequence. However, there is no reason in principle why the

composition by means of logical operators should be treated differently from any other

sort of composition. Even if logical composition represents a particularly important

case, this can be treated as a special case amongst other cases. Proceeding that way

gives us a much greater generality and a wider range of applications. The laws which

3This term has been proposed by Luca Tranchini.



The categorical and the hypothetical 7

explain the meanings of the logical operators can be embedded in a more general frame-

work of rule-based meaning explanations. So we are not just considering generalized

rules for logical constants as done, for example in [15, 16], where the logical meaning

explanations are generalized, but arbitrary definitions. The case of logical constants or

of generalized logical constants can then be obtained by particular definitions.

As the general format for definitions we choose clauses of the form

a := B (7)

where a is an object to be defined and the B is a defining condition for this object. As

in logic programming, we also speak of the head a and the body B of the clause. If we

want to draw a distinction between atoms and complex entities, the definiendum a is

always atomic, whereas a defining condition B can be complex. What complexity here

means, depends on the context considered. In the simplest case, a defining condition

B is just a list of atoms, so that (7) takes the form

a := b1, . . . , bn . (8)

More generally, the condition B may, in addition to the comma (which is a structural

conjunction), contain some sort of structural implication ‘→ ’, so that one can have a

clause such as, e.g.,

a := b, (c→ d), (e→ f) (9)

Further generalizations would allow for (structural) quantifiers in the body etc., or

even infinite sets as bodies (corresponding to infinitary [structural] conjunction, see

[4]). However, most important is the syntax of the objects defined. In all practical

applications we would use variables occurring in defined (and defining) objects, giving

them a term or formula structure. This leads to definitions syntactically corresponding

to logic programs.

What is important already in its simplest form is that there may be more than

one defining clause for an object a. This is a way to express disjunctive meaning at

the definitional level and is well known from logic programming. It is a feature in

which definitions in our sense go beyond explicit definitions, which would only contain

a single clause.

We propose the clausal format as it has proven quite powerful. Systems of clauses

can be viewed from various perspectives, not only as logic programs but also as in-

ductive definitions. Both the study of logic programs and that of inductive definitions

have demonstrated their expressiveness.

It is important to notice that the usual atomic / non-atomic distinction in logic

has nothing to do with the atomic / non-atomic distinction between defined objects

and defining conditions. If we define logical constants, then everything being defined
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is atomic in the definitional sense, even if it is complex in the logical sense. This is

why we prefer speaking of defined objects rather than defined atoms.

The idea of considering systems of clauses as basic definitional systems goes back to

well before logic programming. In the context of recursive function theory, such systems

have been considered by Post [11, 12] and Smullyan [25]. They figure prominently in

Lorenzen’s operative foundation for logic based on the concept of admissibility [8, 9].

In the following, a definition D is a set of definitional clauses, where we leave open

the precise structure of defined objects and defining conditions. It will always be clear

from the context which prerequisites are needed.

3.2. Consequence as constituted by definitional principles

Given a definition D, the consequence relation |=D based on D is defined by certain

rules of consequence which generate expressions of the form A |= B. Thus A |=D B

means that an expression (‘sequent’) of the form A |= B can be generated (i.e., derived)

with respect to the definition D. We omit the reference to the definition D, speaking

just of |=, when the reference is clear from the context, and when it is clear whether

we mean the expression A |= B or the statement A |=D B. Besides general structural

principles, the inferential definition of |=D is based on two major rules of consequence:

definitional closure and definitional reflection. Further principles, such as induction

rules, might be considered in addition, but will not be discussed here.

The rule of definitional closure is a rule for introducing an object on the right

side of a consequence statement. It just expresses the reasoning along a single clause,

expressing that given the body of a clause (a definiens), we may proceed to the head

(the definiendum). This is the principle on which logic programming is based, with

SLD resolution as the evaluation method for backward reasoning. If (7) is a defining

clause for a in D, the corresponding rule of definitional closure is

A |= B

A |= a
(aR) definitional closure

The rule of definitional reflection is a kind of inverse of that rule, representing the

corresponding left introduction rule. It is a more global principle not referring to a

single clause in a definition, but to the definition as a whole. Without considering

variables in clauses, it runs as follows: Suppose a is defined by exactly n clauses










a := B1

...

a := Bn

then the rule of definitional reflection for a is

B1 |= A . . . Bn |= A

a |= A
(aL) definitional reflection
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It says that everything that follows from each defining condition of a follows from a

itself. Definitional reflection may be looked upon as formally expressing the extremal

clause of the inductive definition of a: “Nothing else defines a”.4 If there is only a

single defining clause

a := B

for a, we obtain the axiom a |= B as a ‘direct’ inversion of the closure rule. If a is not

defined at all, we obtain a |= A for any A, i.e., ex falso quodlibet, since the premiss of

aL is vacuously fulfilled.5

Though looking innocuous, definitional reflection adds considerable deductive power

to the evaluation of a clausal definition. In focusing on all clauses of the definition of

a and not just on a single defining clause for a, is non-monotonic in the sense that

consequence statements can loose their validity if the underlying definition is extended.6

In addition to definitional closure and definitional reflection there must be certain

structural principles such as initial sequents

A |= A

and principles governing structural conjunction and structural implication. For struc-

tural implication we might use as rules of consequence the principles

A,B |= C

A |= B→C
(→R)

A |= B

A,B→C |= C
(→L)

which interpret structural implication as a kind of ‘rule’ that can be established (→R)

or applied (→L).7

However, the cut rule is not presupposed. This is absolutely crucial. As in the

standard sequent calculus, this rule does not convey any meaning to the sentences

involved, but serves, if it is admissible at all, to shorten certain derivations8. In fact, it

is closely related to the idea of correctness of inference. So our definition of consequence

4Note that according to our convention to just mention a single object in the antecedent, we have

not mentioned any context of the defining conditions Bi in (aL). More precisely, we should have

written Γ, Bi |= A.

5However, we may use a metalinguistic framework, in which such a limiting case is not allowed or

is handled in a special way. This cannot be discussed here (see [17]).

6For further discussions see [6].

7The schema (→L) differs from Gentzen’s schema for the introduction of implication in the an-

tecedent, but is particularly suited to our reading of structural implication as a kind of ‘rule’, see

[22, 23].

8Yielding, for example, non-elementary (and therefore more than exponential) speed-up in first-

order logic, see [10, 26].
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with respect to a definition D corresponds to a cut-free sequent calculus with added

definitional principles.9 By putting a definition D into action, this system gives the

semantics of the objects defined in D by generating a consequence relation based on D.

Derivations of consequence assertions A |= B in the system just sketched are also called

semantical derivations with respect to D as they establish the semantical consequence

claim A |=D B.10

3.3. Defining the logical constants

The logical operators ∧, ∨, ⊃ and ¬ can be defined by the following definition:

L































(X∧Y ) := X, Y

(X∨Y ) := X

(X∨Y ) := Y

(X⊃Y ) := (X→ Y )

¬X := (X→⊥)

where X and Y range over formulas built up from propositional variables by means

of ∧, ∨, ⊃ and ¬, and where ⊥ is an undefined object, i.e. an object, for which no

definitional clause in D is given. This definition would have to be extended with rules

for the propositional variables representing the material base. If we are only considering

formal logic, we would just add the void clauses

p := p

for every definitional variable p, which express that p is not given any specific mean-

ing.11 This system is called LI and yields, by means of closure and reflection, intu-

itionistic propositional logic.

Our framework is intuitionistic in spirit. In order to obtain classical logic we would

have to consider additional reflection principles such as a principle corresponding to

classical dilemma in order to make sure that p∨¬p becomes a logical law. However,

the validity of a formula under a specific valuation can be established on the basis of

the definition L extended with a truth constant with an empty defining condition

⊤ :=

9Such systems have recently been investigated by Brotherston and Simpson [1], albeit in a frame-

work without structural implication.

10The idea of definitional reflection and the terms “definitional closure” and “definitional reflection”

have been proposed by Hallnäs, who investigated this framework in the context of infinitary clauses

[3, 4]. The handling of finitary clauses with variables is due to Hallnäs and Schroeder-Heister [5]. A

survey of definitional reflection is under preparation [6].

11If we left p just undefined, it would behave like falsum ⊥. So the fact that a propositional variable

p can stand for anything is expressed by a trivial (void) definition for p, which does not assign any

specific meaning to p.
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but without any propositional variables, i.e., with all formulas built up from ⊤ and ⊥

by means of the propositional connectives. This system is called LC. For the validity

of a formula X under the valuation v, we investigate in LC the closed formula in which

every propositional variable p, which is evaluated to true under v, is substituted with

⊤, and every p, which is evaluated to false under v, is substituted with ⊥.

4. Consequence vs. correctness of inference

Suppose we have a definition D with an associated relation of definitional (=semantic)

consequence |=D. Then consequence (with respect to D) and correctness of inference

(with respect to D) coincide, if

A |=D B ⇔ (|=D A ⇒ |=D B) . (10)

The direction from left to right of (10), i.e.

A |=D B, |=D A ⇒ |=D B , (11)

says that consequence ensures correctness of inference. The direction from right to left

of (10), i.e.

(|=D A ⇒ |=D B) ⇒ A |=D B , (12)

says that correctness of inference establishes consequence. For reasons to be explained

later, we call, following Hallnäs [3] a definition D satisfying (11) total, and a definition

D satisfying (12) complete (the latter in a sense somewhat different from Hallnäs’s).

A definition D, which is both total and complete, is called standard, as it underlies

standard semantics.

By formally distinguishing consequence and correctness or inference, we can formu-

late conditions for D, under which totality and/or completeness hold. This gives us a

possibility to deal with phenomena which are excluded, if consequence and correctness

of inference are identified. The main example are non-wellfounded phenomena such

as the paradoxes. For example, if we define a by its own negation (with ⊥ being an

undefined object)

D { a := (a→⊥)

we obtain the semantical derivations

a |= a

a, (a→⊥) |= ⊥
(aL)

a, a |= ⊥

a |= ⊥

|= a→⊥
(aR)

|= a
and

a |= a

a, (a→⊥) |= ⊥
(aL)

a, a |= ⊥

a |= ⊥



12 Peter Schroeder-Heister

which show that both a |=D ⊥ and |=D a hold. Since |=D ⊥ does not hold, as there

is no definitional clause for ⊥ in D, this means that D is not total. It is actually not

necessary to require that ⊥ be undefined, but only that ⊥ be underivable with respect

to D.

A sufficient condition, under which totality holds, is, for example, that defining con-

ditions do not contain (structural) implication. In logic programming, this corresponds

to the case of definite programs (whereas the previous example corresponds to a non-

definite normal program). Another sufficient condition would be the wellfoundedness

of definitional chains, which in logic programming corresponds to stratified normal

programs. Other conditions refer to the inference machinery used to generate con-

sequences from definitions. If we disallow contraction in antecedents of consequence

statements, we can enforce totality, which corresponds to well-known strategies of

avoiding paradoxes proposed by Curry, Fitch and others. Another such condition is

to prohibit consequence statements of the form a |= a, if a is defined, i.e., if there is

a definitional clause for a in D. The rationale behind the latter condition, which was

proposed by Kreuger [7], is that if a is defined, consequences involving a should be ob-

tained according to their meaning, i.e., by means of the rules based on the definitional

clauses for a (which are definitional closure and definitional reflection with respect to

a). This is related to certain three-valued semantics for normal logic programs and

related proof-theoretic accounts (see [18] and the references therein).12

A definition, which is total, but not complete, is the above definition of the intu-

itionistic logical constants. It can easily be shown that

|=LI ¬p⊃q∨r ⇒ |=LI (¬p⊃q)∨(¬p⊃r) ,

but it can also be shown that

¬p⊃q∨r |=LI (¬p⊃q)∨(¬p⊃r)

does not hold. This example essentially expresses the fact that in intuitionistic proposi-

tional logic not all admissible rules are derivable, which was first pointed out by Harrop

using this (and other) examples.13 A nontrivial example of a definition which is both

total and complete is the logic LC of truth and falsity defined in section 3.3.

The reason for calling a definition for which (11) holds total, is that it is sensible

to call definitions, for which (11) does not hold, partial. Any definition conveys some

12It should be noted that in the latter two cases, in which the inference machinery is changed in

such a way that totality is always satisfied, we are not again identifying consequence with correct

inference. Though in these cases, consequence coincides with correctness of inference, this is a result

which can be proved and not something forced by definition as in standard semantics.

13An artificial, but much simpler example is the following: Let D consist of the clauses a := a and

b := b. This definition is total. Since |= a is not derivable, (|= a ⇒ |= b) is valid. However, a |= b is

not derivable.
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meaning to the object defined, even if this meaning is very rudimentary and therefore

‘partial’. If we are successful, i.e., if consequence based on the given meaning ensures

correctness of inference, our meaning assignment is total. However, this success, which

might be intended, is not necessarily a syntactic property of the definition14, but some-

thing which must be proved to hold. In this sense it is, as Hallnäs has pointed out,

related to the usage of “partial” and “total” in recursive function theory. Whether

a partially recursive function is total, is not a syntactic property of its definition —

totality, which corresponds to the halting problem, is even undecidable. As with the

definition of a partially recursive function, we have an elementary description of what

a definition looks like, where the correctness of a definition is not an immediate feature

of its being well-formed. The converse of totality, i.e., (12), is called completeness,

because it expresses completeness with respect to admissibility, i.e., it expresses the

fact that every admissible rule is derivable.15

Digression on admissibility and derivability. If |=D is written as the derivability

relation ⊢ in a formal system, the principle (10), which is criticized in this paper,

is strongly reminiscent of the identification of derivability with admissibility. A⊢B

expresses that the rule
A

B
is derivable, whereas (⊢A ⇒ ⊢B) expresses that it is

admissible. That these notions do not always coincide, is elementary knowledge. In

fact, we want to introduce an analogous distinction at the semantical level. There

the notion of a rule is played by the notion of a consequence statement A |= B, its

‘derivability’ in a system D by A |=D B, and its ‘admissibility’ by (|=D A ⇒ |=D B).

In standard semantics based on the transmission view of consequence, ‘derivability’

is defined as ‘admissibility’ and therefore identified with it, whereas we want to keep

these concepts apart. However, the analogy with the syntactical case is only partial:

There derivability is the stronger concept which trivially implies admissibility, whereas

at the semantical level, ‘derivability’ does not even imply ‘admissibility’.

5. Our model of inference

According to what we have now proposed, consequence is an independent semantical

concept which does not necessarily coincide with the correctness of inference and there-

fore cannot, even in an inferential approach, defined that way. In this sense, it does not

necessarily result from inference nor can it guide inference. If the definition considered

is not total, consequence would not even imply correctness of inference. Consequence

14Sometimes it is, for example in the case of wellfoundedness.

15So we associate with “completeness” a slightly different meaning from that given to it by Hallnäs

[3], who associated with it the fact that for every object a, either |=D a or a |=D ⊥ holds (with ⊥ being

undefined). This fact is classically related to completeness in our sense. However, our weaker reading

of “completeness” seems to us to be more natural, as it is directly related to constructive reasoning.
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can be used to guide inferences only if it has been shown beforehand that the definition

in question is total.

Now for us consequence is itself an inferential notion. That a consequence statement

A |=D B holds is established by a semantical derivation yielding A |= B. There is no

need to distinguish any further concept of derivation from this one. An inference step

from A to B with respect to a definition D:

A

B

would have to be written explicitly as a step

|= A

|= B

in a semantical derivation, where the antecedents of semantical sequents are empty.

Its correctness means that if |=D A, then |=D B. What is changed as compared to the

standard view is that this correctness cannot always (i.e., if D is not total and complete)

be expressed by the consequence statement with the premiss A as its antecedent and

the conclusion B as its consequent: A |=D B.

As for us inference steps are steps in semantical derivations, they actually have the

more general form

A1 |= B1 . . . An |= Bn

C |= D
(13)

where antecedents are not necessarily empty. This corresponds to the idea that in

natural deduction, derivations can depend on assumptions. Here this dependency is

expressed by non-empty antecedents, as is the procedure of the sequent calculus. Our

model of inference is the sequent-calculus model ([19]). In this more general form, the

correctness of an inference step of form (13) (with respect to a definition D) means

that, whenever A1 |=D B1, . . . , An |=D Bn, then C |=D D.

More precisely, to show that (13) is correct (with respect to D), we have to show

that, given grounds for for the premisses, we have to provide (= to construct) grounds

for the conclusion. If we denote that g is a ground for A |= B by g : A |= B, we can

reformulate (13) as

g1 : A1 |= B1 . . . gn : An |= Bn

g : C |= D
(14)

where it is understood that g is obtained by some constructive operation from g1, . . . , gn,

i.e., g = f(g1, . . . , gn). We leave it open how to formalize grounds and their handling.
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Important here is that a ground g for A |= B codifies a semantical proof of A |= B,

i.e. (14) expresses that from proofs of the premisses A1 |=D B1, . . . , An |=D Bn we

can construct a proof of the conclusion C |=D D. In this sense the correctness of

an inference step expresses the admissibility of this step as an inference rule with

respect to the basic semantical inference rules. Semantical steps such as definitional

closure and reflection are just a special kind of inference steps, namely those which

are immediately justified. “Immediately” means that the grounds for the premisses,

which are semantical derivations of them, are extended by an additional step to yield a

semantical derivation and therefore ground of the conclusion. For steps which are not

primitive steps an admissibility procedure must be given.

For example, take the consequence step

p |= (q⊃r)

q |= (p⊃r)
. (15)

If we indicate, quite informally, the grounds for the respective statements by g and g′,

it reads as:

g : p |= (q⊃r)

g′ : q |= (p⊃r)
.

Generating g′ from g can be done in an obvious way, checking the ways the premiss

can be proved in the semantical sequent calculus.

This idea differs from standard proof-theoretic semantics, where inferences are jus-

tified by certain transformation procedures, in two respects: Semantical derivations

are not just derivations based on introduction inferences (or Right-introduction rules),

secondly they are based on sequent-style rather than natural deduction derivations.

This way of proceeding makes things simpler in so far as no assumptions need to be

considered which may be discharged. As the handling of assumptions is built into se-

quents, the correctness of an inference of form (13) is a simple admissibility statement,

whereas in natural-deduction based proof-theoretic semantics complicated justification

procedures must be used.16

It should be emphasized that the handling of grounds in the sense described is

different from that of terms in the typed λ-calculus. When generating grounds from

grounds according to (14) (and elucidated in the example just given), we consider

grounds for whole sequents, whereas in the typed λ-calculus terms representing such

16It should be mentioned that categorial proof theory is nearer to the semantically understood

sequential paradigm than standard proof-theoretic semantics, which is focused on natural deduction.

It would thus be worthwhile to investigate the sequential approach to semantics, with its conceptual

priority of hypothetical judgements, in categorial terms. The anonymous reviewer reminded me of

this fact, pointing in particular to the subobject relationship as the consequence relation in a topos.
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grounds are handled within sequents. So the notation g : A |= B we used above,

which is understood as g : (A |= B), differs from the λ-calculus notation x : A⊢ t :

B, where t represents a proof of B from A and the declaration x : A on the left

side represents the assumption A. The λ-calculus view and the corresponding Curry-

Howard-interpretation actually incorporates the placeholder view of assumptions by

always using a variable to represent the ground for an assumption, which by means of

substitution can be filled with a term standing for a closed proof of it.

6. Reasoning and the paradox of inference

In the dicussion about logical inference, a so-called “tension” between informativeness

and validity has been discussed, notably by Dummett [2] with reference to Cohen

and Nagel, but many other authors discuss this issue using different terms. Here by

informativeness it is meant that a logical inference should give some new information,

otherwise it would be useless, and by validity it is meant that it follows from what is

given in the premisses, i.e., without addition of anything from outside. This problem

also applies to the case of material inference discussed here, as material inference is

inference with respect to a definition D, and should not draw conclusions not contained

in D. The solution proposed by Dummett runs roughly as follows: There is some

basic sort of inferences, viz. the introduction inferences in natural deduction, which

are canonical and which are immediately obvious, as they are (in our terminology)

just definitional. However, the second sort of inferences are based on some sort of

justification which generates grounds for the conclusion from grounds of the premisses.

These are essentially the elimination inferences, and the generation of grounds is done

via reduction procedures of the kind elaborated by Prawitz [13].

This solution is not so much different in the case considered here. We also con-

sider certain inferences as basic which constitute the grounds for a sentence or for a

consequence statement. These are the semantical inference rules, notably the rules of

definitional closure and definitional reflection, which define consequence statements.

When performing an inference step, there is a step of generating grounds, which is

constituted by certain operations on semantical derivations, where these semantical

derivations have now formally the form of (cut-free) sequent-style proofs. So far the

pattern is similar: There are canonical inferences constituting grounds, and there are

non-canonical inferences obtained by procedures generating grounds from grounds.

The basic difference is that we are now working in a sequent-style framework, where

the canonical (definitional) inferences, our ‘rules of consequence’, comprise both the

Right- and Left-inferences. In this sense, assertions and assumptions are on par. The

basic entities are hypothetical and not categorical judgements. We change the notion

of “canonical” (or “definitional”, as we call it), but not the idea that there must be

justification procedures for those inferences that do not follow the definitional pattern.
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As we do have the distinction between Left- and Right-inferences, one may now

even draw a twofold distinction: Between Right- and Left-inferences on the one hand

and between definitional (i.e., Right- plus Left-) and non-definitional inferences.17 This

twofold distinction is justified, as already the Left-inferences are in some way indirect

because they involve a step of reflection upon the definition as a whole and not just

follow single definitional clauses as do the Right-inferences. An inference of the form

(13) may thus be either a direct definitional inference (based on definitional closure) or

an indirect definitional inference (based on definitional reflection) or a non-definitional

inference (based on a procedure generating grounds from grounds). Whereas direct

and indirect definitional inferences are meaning giving and thus do not generate new

information, a non-definitional inference such as (15) is based on the generation of

grounds and is therefore informative.18

The approach sketched here based on the primacy of hypothetical judgements can

be carried over to other reasoning formats as well. In natural deduction style it would

lead to bidirectional natural deduction [21]. Another framework would be the dialogi-

cal or game-theoretical approach to semantics, in which the duality of assumptions and

assertions is reflected by the roles of the two players of a game, which means that the

primacy of the hypothetical is built into the framework from the very beginning. A

further advantage of all approaches based on hypothetical reasoning is the lack of func-

tionals to interpret iterated implications, which are necessary in standard constructive

semantics, but which, in particular in combination with non-wellfounded definitions,

pose severe problems when they are interpreted epistemologically.
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17One might perhaps even introduce a threefold distinction, where one also separates the structural

principles from the semantical principles in the narrower sense (definitional closure and definitional

reflection).

18We are claiming that it is the generation of justifications or grounds which makes an inference

informative. This need not always be a generation of grounds for every single step ‘from scratch’. In

the case where we have totality, it may also establish some consequence and then use this consequence

in an inference using cut. The generation of grounds would then be hidden in the proof of this

consequence together with the cut elimination proof for the whole system.
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