Übungen zur Vorlesung λ -Kalkül und kombinatorische Logik

Aufgabe 1 [3]

 Υ sei der Fixpunktkombinator $\lambda x.(\lambda y.x(yy))(\lambda y.x(yy))$. Warum gilt *nicht*: $\Upsilon x \rhd_{\beta} x(\Upsilon x)$?

Aufgabe 2 [3]

Beweisen Sie unter der Voraussetzung $x \notin FV(PQ)$:

$$Px =_{\beta \eta} Qx \implies P =_{\beta \eta} Q.$$

<u>Aufgabe 3</u> [5 Punkte für eine der beiden Richtungen, für die andere 5 Zusatzpunkte] Beweisen Sie:

$$M \rhd_{\beta} N$$
 genau dann, wenn $\lambda \beta_{\triangleright} \vdash M = N$.

(Hinweis: Für die Richtung von links nach rechts verwende man Induktion über der Länge von β -Reduktionsfolgen, für die von rechts nach links Induktion über der Herleitunglänge.)

Aufgabe 4 [2+2+2]

(a) Geben Sie eine β -Reduktionsfolge für den folgenden Term an:

$$(\lambda x.(\lambda x.yxx)(\lambda y.yxx))(\lambda y.xy).$$

(b) Sei $N \equiv \lambda uxy.x(uxy)$, $\underline{1} \equiv \lambda xy.xy$ und $\underline{2} \equiv \lambda xy.x(xy)$. Zeigen Sie:

$$N\underline{1} \rhd_{\beta} \underline{2}$$
.

(c) Sei $\underline{0} \equiv \lambda xy.y$ und $D \equiv \lambda xyz.z(Ky)x$. Zeigen Sie:

$$Dxy\underline{0} >_{\beta} x,$$

$$Dxy\underline{1} >_{\beta} y.$$