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INTRODUCTION: PROOF-THEORETIC SEMANTICS

According to the model-theoretic view, which still prevails in logic,
semantics is primarily denotational. Meanings are denotations of
linguistic entities. The denotations of individual expressions are
objects, those of predicate signs are sets, and those of sentences are
truth values. The meaning of an atomic sentence is determined by the
meanings of the individual and predicate expressions this sentence is
composed of, and the meaning of a complex sentence is determined
by the meanings of its constituents. A consequence is logically valid if
it transmits truth from its premisses to its conclusion, with respect to
all interpretations. Proof systems are shown to be correct by dem-
onstrating that the consequences they generate are logically valid.
This basic conception also underlies most alternative logics such as
intensional or partial logics. In these logics, the notion of a model is
more involved than in the classical case, but the view of proofs as
entities which are semantically dependent on denotational meanings
remains unchanged.

Proof-theoretic semantics proceeds the other way round, assigning
proofs or deductions an autonomous semantic role from the very
onset, rather than explaining this role in terms of truth transmission.
In proof-theoretic semantics, proofs are not merely treated as
syntactic objects as in Hilbert’s formalist philosophy of mathematics,
but as entities in terms of which meaning and logical consequence can
be explained.

The programme of proof-theoretic semantics can be traced back to
Gentzen (1934). Seminal papers by Tait, Martin-Löf, Girard and
Prawitz were published in 1967 and 1971.1 An explicit formulation of
a semantic validity notion for generalized deductions with respect to
arbitrary justifications was given by Prawitz (1973). Much of the
philosophical groundwork for proof-theoretic semantics was laid by
Dummett from the 1970s on, culminating in Dummett (1991). Martin-
Löf ’s type theory, whose philosophical foundation is proof-theoretic
semantics, became a full-fledged theory in the 1970s aswell (seeMartin-
Löf 1975, 1982). The term ‘‘proof-theoretic semantics’’ was proposed
by the second editor in a lecture in Stockholm in 1987.2
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Since proof-theoretic semantics has reached some status of
maturity, we considered it appropriate to organize a conference with
that title at the University of Tübingen in January 1999.3 The papers
presented at this conference were the following:

– Dag Prawitz: Meaning explained in terms of proofs: A comparison
of some approaches

– Lars Hallnäs: Defining the semantics
– Patrizio Contu: The justification of the logical laws revisited
– Gabriele Usberti: Towards a semantics based on the notion of
justification

– Michael Dummett: Reply to Warren Goldfarb
– Göran Sundholm: Inference versus consequence
– Roy Dyckhoff: Permutation-free sequent calculi
– Jörg Hudelmaier: A semantical sequent calculus for intuitionistic
logic

– Robert Stärk: Proof-theoretic semantics of logic programs
– Grigori Mints: Partial proofs and cut introduction
– Per Martin-Löf: The distinction between sense and reference in
constructive semantics

– Kosta Došen: Models of proofs
– Peter Schroeder-Heister: Frege’s sequent calculus
– Reinhard Kahle: A proof-theoretic view of intensionality
– Michael Rathjen: The role of ordinals in proof theory
– William Tait: Beyond the axioms: The question of objectivity in
mathematics

The present collection grew out of this conference but is not intended
as a volume of proceedings. Our idea was, by means of various basic
papers, to shed some light on central topics of proof-theoretic
semantics to enable researchers from other branches of logic to gain
some insight into a subject which we think has a bright future.

The first topic of these papers are approaches giving proofs a
semantic value without reference to denotations: Prawitz philo-
sophically elucidates his meaning theory based on proofs, and
Schroeder-Heister, Contu and Hallnäs deal affirmatively and criti-
cally with validity notions developed in the tradition created by
Prawitz. Tait, in a type-theoretic framework, shows that a non-
denotational approach does not necessarily lead to non-classical
(intuitionistic) logic. Then there are contributions which reflect on
the framework in which proofs should be dealt with: Sundholm
compares different forms of natural deduction from a
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meaning-theoretic point of view, and Došen puts forward categor-
ical logic as a framework particularly appropriate for proof-theo-
retic semantics. Two papers develop applications: Kahle uses proof-
theoretic semantics in order to clarify the notion of necessity, while
Usberti carries over proof-theoretic semantics to the justification of
empirical sentences. Finally we have two contributions dealing with
the background to proof-theoretic semantics: Mints presents some
basic ideas of Russian constructivism, and Rathjen gives an over-
view of theories of ordinals which have dominated proof theory for
quite some time.

Due to various circumstances, editing this collection stretched over
a period of several years. We received the first manuscripts in 1999
and the last update of a paper in 2004. We apologize for this delay to
those authors who submitted their contributions early.

We should like to thank the reviewers for their efforts, Wilfried Sieg
forvaluable commentsonapreviousversion, andJanahPutnamforher
help with language editing. Special thanks are due to Thomas Piecha,
who prepared the final manuscript, for his careful editorial work.

NOTES

1 See Tait (1967), Girard (1971), Martin-Löf (1971), Prawitz (1971).
2 First in press in Schroeder-Heister (1991). Whether this term had already occa-

sionally been used in Stockholm at that time he cannot recall, although he does not
want to rule this out. – As early as 1968 Kutschera used the term ‘‘Gentzen
semantics’’ [‘‘Gentzensemantik’’] (see Kutschera 1968).
3 Supported by DFG grant Schr 275/12-1.
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DAG PRAWITZ

MEANING APPROACHED VIA PROOFS

ABSTRACT. According to a main idea of Gentzen the meanings of the logical
constants are reflected by the introduction rules in his system of natural deduc-
tion. This idea is here understood as saying roughly that a closed argument
ending with an introduction is valid provided that its immediate subarguments are

valid and that other closed arguments are justified to the extent that they can be
brought to introduction form. One main part of the paper is devoted to the exact
development of this notion. Another main part of the paper is concerned with a

modification of this notion as it occurs in Michael Dummett’s book The Logical
Basis of Metaphysics. The two notions are compared and there is a discussion of
how they fare as a foundation for a theory of meaning. It is noted that Dum-

mett’s notion has a simpler structure, but it is argued that it is less appropriate
for the foundation of a theory of meaning, because the possession of a valid
argument for a sentence in Dummett’s sense is not enough to be warranted to

assert the sentence.

1. INTRODUCTION

The term proof-theoretic semantics would have sounded like a con-
tradictio in adjecto to most logicians and philosophers half a century
ago, when proof theory was looked upon as a part of syntax, and
model theory was seen as the adequate tool for semantics. Michael
Dummett is one of the earliest and strongest critics of the idea that
meaning could fruitfully be approached via model theory, the
objection being that the concept of meaning arrived at by model
theory is not easily connected with our speech behaviour so as to
elucidate the phenomenon of language. Dummett pointed out at an
early stage that Tarski’s T-sentences, i.e., the various clauses in
Tarski’s definition of truth, cannot simultaneously serve to determine
both the concept of truth and the meaning of the sentences involved.
Either one must take the meaning as already given, which is what
Tarski did, or one has to take truth as already understood, which is
the classical approach from Frege onwards.

This latter alternative amounts to an account of meaning in terms
of truth conditions depending on a tacit understanding of truth. In the
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case of a construed formal language, the T-sentences become postu-
lated semantic rules that are supposed to give the formulas a meaning
(a representative presentation of this view is in Introduction to Math-
ematical Logic by Alonzo Church (1956)). If the T-sentences are to
succeed in conferring meaning to sentences, this must be because of
some properties of the notion of truth. A person not familiar with the
notion of truth would obviously not learn the meaning of a sentence by
being told what its truth condition is. It therefore remains to state what
it is about truth that makes the semantic rules function as genuine
meaning explanations – the semantics has to be embedded in a meaning
theory as Dummett puts it.

In the case of an already given natural language, the T-sentences
become instead hypotheses, which must somehow be connected with
speech behaviour. Here one may follow Donald Davidson’s sugges-
tion which may roughly be put: if ‘‘A is true iff C’’ is a correct
T-sentence for the sentence A in a language L, then a speaker of L
who asserts A normally believes that the truth condition C is satisfied;
cases when a speaker is noticed both to observe that C is satisfied and
to assert A therefore constitute data supporting the T-sentence.

By making this connection between T-sentences and speech
behaviour for at least observation sentences, one begins spelling out
the concept of truth, which is needed to support the claim that the
T-sentences give the meaning of the sentences of a language. How-
ever, as argued by Dummett (e.g., in Dummett 1983), it is only a
beginning, because the assertion of sentences is only one aspect of
their use. If the T-sentences are really to be credited with ascribing
meaning to sentences, they must be connected with all aspects of the
use of sentences that do depend on meaning. In other words, there are
further ingredients in the concept of truth that must be made explicit,
if the truth condition of a sentence is to become connected with all
features of the use of the sentence that do depend on meaning. One
such feature is the use of sentences as premisses of inferences. When
asserting a sentence we are not only expected to have grounds for the
assertion, we also become committed to certain conclusions that can
be drawn from the assertion taken as a premiss.

I shall leave the prospects of rightly connecting the meanings of
expressions with our use of them within a theory of meaning devel-
oped along these lines, and shall instead review some approaches to
meaning that are based on how we use sentences in proofs. One
advantage of such an approach is that from the beginning meaning is
connected with aspects of linguistic use.
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One very simple version of an approach of this kind is to take
meaning to be determined by all the rules for a language. Restricting
oneself to deductive uses of language and thinking of proofs as
determined by a set of inference rules, meaning simply becomes
determined by all the inference rules of the language. This way of
literally following the slogan ‘‘meaning is use’’ – the inference rules
that determine the use of sentences also determine their meaning – fell
in some disrepute, when Prior (1960) introduced a sentential operator
tonk governed by rules similar to the introduction rule for disjunction
and the elimination rule for conjunction. Since the effect of adding
tonk to a language is to make all sentences derivable, a person who
adheres to the idea that an arbitrary set of inference rules determines
meaning must be prepared to allow that even inconsistent languages
are entirely meaningful.

An interesting defence of such a standpoint is given by Cozzo
(1994). He develops a theory in which the meaning of a sentence is
given by arbitrary argumentation rules concerning the terms that
occur in the sentence. The theory is interesting because, in spite of the
fact that it gives a meaning to tonk and thus to inconsistent lan-
guages, it makes meaning compositional, it rejects semantic holism
but respects epistemological holism, and it allows criticism of a lan-
guage; a meaningful language may not be a good language (or in
Cozzo’s terminology: a ‘‘correct’’ language). However, this is not a
line of thought that I shall follow here.

The approaches that I shall discuss are inspired by the main idea
behind Gentzen’s systems of natural deduction, and take a quite
different view with respect to the kind of inference rules that are
considered as a possible basis for a theory of meaning. I shall mainly
restrict myself to an approach that I first proposed in Prawitz (1973)
and to a somewhat modified approach suggested by Dummett (1991).
These two approaches will be compared and problems concerning the
possibility of embedding them into a full theory of meaning will be
discussed.

2. GENTZEN’S IDEA OF INFERENCE RULES DETERMINING MEANING

There is a remark by Gentzen (1934) which he made after having
constructed his system of natural deduction and which I have quoted
before both as a key to the normalization theorem for natural
deduction (or the Hauptsatz) and as a basis for a proof-theoretic
semantics. It reads:
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The introductions constitute, as it were, the ‘definitions’ of the symbols concerned,
and the eliminations are, in the final analysis, only consequences of this, which may
be expressed something like this: At the elimination of a symbol, the formula with
whose outermost symbol we are dealing may be used only ‘in respect of what it

means according to the introduction of that symbol’.

In contrast to meaning theories inspired by model theory, meaning is
now given not by truth conditions but by certain ways in which truth
is established, what Gentzen calls introductions. The truth of a sen-
tence may however be established also in other ways, which is to say
that a sentence may also occur in other connections than introduc-
tions. Gentzen is now careful to stress something which was noted to
be absent but needed in the approach to meaning based on truth
conditions, viz., that the other uses of a sentence are accounted for in
terms of (or as Gentzen expresses it: are ‘consequences of’) the
meaning ascribed.

To develop Gentzen’s idea we have thus firstly to state more ex-
actly how the introductions determine the meaning of the logical
constants; the phrase saying that the introductions represent defini-
tions is clearly not meant to be taken literally. The view that I am
taking is that the introductions represent what we may call the
canonical ways of inferring a sentence. Other ways of inferring a
sentence have to be justified by reducing them to the canonical ways.

Gentzen considers besides introductions certain specific infer-
ences that he calls eliminations. We cannot expect these eliminations
to be derivable from the introductions in the ordinary sense of being
derived inference rules in the system given by the introduction rules.
Instead, we have to show that they can be justified in some semantic
way, which is to say that they can be shown to be valid in view of
the meaning of the sentences involved.

The task is thus to develop an appropriate notion of validity and
to show that certain legitimate forms of reasoning are valid in the
sense defined. We should then not restrict ourselves to the elimi-
nations given by Gentzen but consider what it is for any non-
canonical inference to be valid.

3. DEFINING THE VALIDITY OF ARGUMENTS

3.1. Argument Skeletons

Validity has thus to be defined not only for derivations in some
given system but for more arbitrary ways of reasoning.1 I shall
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therefore define validity for what I call arguments. Furthermore, it
seems strange to speak of the validity of proofs. A false sentence is
still a sentence, but an invalid proof is not really a proof. In con-
trast, an argument may be valid or invalid – if it is valid, it rep-
resents a proof.

By an argument skeleton I shall understand a tree arrangement of
formulas; if all the formulas are sentences (i.e., closed formulas), the
arrangement is to be understood as claiming for each sentence in the
tree except the ones at the top that it follows from the sentences
(premisses) standing immediately above. For each top sentence of the
tree there is to be indicated whether it is claimed outright as holding
(to follow from zero premisses) or if it is entered as an assumption
made for the sake of the argument, in which case there may also be
an indication at which step in the argument the assumption is dis-
charged or bound as I shall say. An example of a step that is allowed
to bind assumptions is implication introduction, i.e., an inference of
the form

½A�
D
B

A � B

ð1Þ

There may also be indications that a variable that is free in the for-
mulas in which it occurs is bound by some step in the argument. An
example of a step that binds variables is universal introduction, i.e.,
an inference of the form

D
AðxÞ
8xAðxÞ

ð2Þ

An inference binds only occurrences of an assumption or a variable
that appear in the part of the tree that is above the conclusion of the
inference. When a variable is bound by a step it must not occur in
the conclusion of the step or in assumptions that are not bound by
the step or by some step higher up in the tree (cf. the conditions on so
called Eigenvariablen). An occurrence that is not bound is said to be
free.

An argument skeleton is closed, if all occurrences of assumptions
are bound and likewise all occurrences of variables that are free in the
formulas are bound in the argument skeleton; it is open otherwise. An
open argument skeleton is to be understood as a schema, from which
closed argument skeletons can be generated by first substituting
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closed terms for the free variables and then closed argument skeletons
for the free assumptions (in the argument skeleton resulting from the
first substitution); the result is said to be an instance of the open
argument skeleton.

I have been speaking about argument skeletons because what I
shall take to be arguments will contain something in addition to the
trees of formulas (with indications of how assumptions and variables
are bound) which we have been considering so far. The notion of
validity will be defined for arguments, i.e., argument skeletons sup-
plemented in a way that remains to be specified. The need for this
supplementation does not arise in connection with the introduction
inferences, which will now be considered in more detail.

3.2. Canonical Forms

An argument skeleton whose last step is an introduction will be said
to be in canonical form. For each sentence there are given forms of
arguments for the sentence which count as canonical. The idea is that
these forms determine the meaning of the sentence. The sentence is to
be understood as standing for something whose canonical proof, if
there is a proof at all, is of the form specified. An argument step that
has the form of an introduction is therefore valid by the very meaning
of the sentence occurring as conclusion. We shall take care of this
idea by saying that an argument whose skeleton is closed and is in
canonical form is valid provided its immediate subarguments (i.e., the
arguments for the premisses of the last inference step) are valid.

Closed arguments whose skeleton has the form exhibited in (1), (2)
or

D1 D2 D D
A1 A2
A1&A2

Ai
A1 _ A2

AðtÞ
9xAðxÞ

ð3Þ

are thus valid provided the immediate subarguments resulting from
leaving out the last step are valid.

When a skeleton has one of the forms shown in (3), one could
impose a more stringent requirement on the canonical forms, namely
that the skeletons of the immediate subarguments are themselves in
canonical form. However, when the last inference step is an impli-
cation introduction or a universal introduction as in (1) or (2), then,
as we have seen, it binds occurrences of an assumption or of a
variable, respectively. Therefore, the argument skeleton obtained by
leaving out the last step may not be closed, and it would be too
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stringent to impose on the canonical forms that also such an open
part of the skeleton is canonical.

3.3. Open Argument Skeletons

In line with the understanding of open argument skeletons as sche-
mata, we shall adopt the principle that an open argument is valid
provided those instances are valid that are obtained by substituting
closed terms for the free variables (supposed to denote objects that
belong to the range of the variable) and valid closed arguments for
the free assumptions. Let us call such an instance an appropriate
instance. We have thus the following

Principle of validity for open arguments: An open argument is valid
if and only if all its appropriate instances are valid.

3.4. Justifications of Non-Canonical Arguments

How is then an inference step that is not an introduction to be jus-
tified with reference to the meaning of the sentences involved? Con-
sider a closed argument whose skeleton ends with modus ponens:

D1 D2

A A � B
B

ð4Þ

Suppose that the immediate subarguments are valid. Their skeletons
D1 and D2 that end with A and A � B are closed, and by the meaning
of A � B, it should be possible to bring the valid argument D2 for
A � B into canonical form with a skeleton as exhibited in (1) above.
It should remain valid, and its immediate subargument with skeleton
D should then also be valid. D is open, but by substituting D1 for the
open occurrences of the assumption A in D we obtain

D1

½A�
D
B

ð5Þ

i.e., a closed argument for B, which should also be valid, being an
appropriate instance of a valid closed argument schema.

This is a rough outline of how modus ponens is justified in terms
of a notion of validity that is not yet defined. The main idea is that
there is an operation that transforms an argument skeleton of the
form (4) where the part D2 is in canonical form into another
argument skeleton (5) still ending with B but from which the
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exhibited application of modus ponens is eliminated. An operation
of this kind I shall call a justification (strictly speaking one should
say an alleged justification) in this case of modus ponens. A justi-
fication of modus ponens should show that a closed argument for B
whose skeleton has the form exhibited in (4) and whose immediate
subarguments are valid could be brought into a valid closed
canonical argument for B.

My approach is now to let the arguments for which validity is
defined consist of argument skeletons together with proposed jus-
tifications of all the inferences that are non-canonical. A bare
argument skeleton is not regarded in itself as a valid argument. In
other words, it is not enough that there exist effective means for
finding another argument skeleton for A in canonical form for
counting a given argument skeleton for a sentence A as a valid
argument. It is the skeleton together with such effective means,
operating on the given skeleton, that constitute an argument for A,
as I see it.

An (alleged) justification is any operation that is defined for
argument skeletons of some form and transforms them to other
argument skeletons for the same formulas without introducing
additional free variables or free assumptions. In addition we only
need to impose a few formal requirements on the operations such as
commuting with substitutions. A set of such operations with mutually
disjoint domains of definitions will be said to be a consistent justifi-
cation set. By an argument I shall understand an argument skeleton
together with a consistent justification set.

An argument consisting of an argument skeleton D and a jus-
tification set J will be said to reduce to another argument con-
sisting of the skeleton D0 and the justification set J , if D reduces
to D0 in the same way as natural deductions are said to reduce to
each other in connection with normalizations, but now using the
justification set J instead of the reductions defined for natural
deductions. Notions introduced for argument skeletons may be
carried over to arguments in the obvious way. In particular, an
argument consisting of an argument skeleton D and a justification
set J , written hD;J i, will be said to be open or closed, if D is
open or closed, respectively. Similarly, an immediate subargument
of hD;J i is an argument hD0;J 0i where D0 is an initial part of D
ending with a premiss of the last inference step in D and J 0 is the
subset of J obtained by leaving out justifications of steps not
occurring in D0.
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3.5. Principles of Validity

We may now sum up the ideas outlined above by stating three
principles that the notion of validity for arguments should satisfy.

Principle 1. A closed argument in canonical form is valid iff its
immediate subarguments are valid.

Principle 2. A closed argument not in canonical form is valid iff it
reduces to a valid argument in canonical form, i.e., to an argument
that is valid by principle 1.

Principle 3. An open argument hD;J i is valid iff all those instances
hD0;J 0i of hD;J i are valid where J 0 is a consistent extension of J
and D0 is an appropriate instance of D, i.e., the argument is to be
appropriate in the sense that for any argument E that is substituted
for a free assumption in D in order to form D0 it should hold that
hE;J 0i is valid.

Principles 1 and 2 articulate the idea that the meaning of a sen-
tence is given by what counts as a canonical proof of the sentence: the
use of an introduction in an argument preserves validity by the very
meaning of the inferred sentence, and non-canonical arguments are
valid if and only if they reduce to valid canonical ones. Principle 3
articulates the idea that an open argument is seen as an argument
schema.

Together the three principles also constitute an inductive definition
of the notion of validity, provided that a set of valid canonical
arguments for atomic sentences is given as an induction base. Prin-
ciple 3 refers the validity of open arguments to the validity of closed
arguments as determined by principles 1 and 2. Principle 2 refers to
validity as determined by principle 1. Principle 1 finally refers the
validity of an argument for a given sentence to the validity of other
arguments as determined by all the principles but with respect to
formulas of lower complexity than the given one. Clearly we can
extend the present approach to other sentence forming operations, if
we can formulate introduction rules for the operations in such a way
that each inference that proceeds according to the rule satisfies the
requirement that the premisses of the inference and the assumptions
that are bound by the inference are of lower complexity than the
conclusion of the inference.

When the induction base B is made explicit by a set of inference
rules for atomic formulas (both conclusion and premisses are to be
atomic), I shall speak about validity relative to an atomic base B. A
logically valid argument must be valid relative to an arbitrary base B.
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But we should require more. Otherwise the atomic formulas get a
special status, not congruent with the idea that when speaking of
logical validity the atomic formulas are thought to stand for arbitrary
propositions. Of logical validity one should therefore require that the
validity is invariant also for substitutions for atomic formulas.

3.6. The validity of inference rules

An inference rule may be defined as valid relative to a justification j if
it preserves validity. More precisely it is to hold for each argument
skeleton D whose last inference step is an application of the rule and
for each consistent extension J of fjg that the argument hD;J i is
valid if its immediate subarguments are. A rule whose validity is
invariant for variations of atomic base and substitutions for the
atomic formulas may be said to be logically valid.

All arguments where the skeleton is formed according to the in-
tuitionistic rules of natural deduction for predicate logic and where
the justifications assigned to the elimination steps consist of the
ordinary reductions defining normalizations for natural deductions
are (logically) valid. This is most easily proved by first showing that
each intuitionistic elimination rule is (logically) valid with respect to
its reduction operation.

To exemplify we may again look at modus ponens to which we
assign an operation j that transforms a skeleton of form

½A�
D

D1 B
A A � B

B

ð6Þ

to a skeleton of the form exhibited in (5) above. We want to show
that an argument is valid when its skeleton has the form exhibited in
(4) and its set J of justifications is a consistent extension of fjg given
the assumption that its immediate subarguments hD1;J i and hD2;J i
are valid. We first note that the validity of hD2;J i implies that it
reduces to a valid argument in canonical form. Remembering that the
justifying operations commute with substitutions, it follows that the
given argument reduces to an argument whose skeleton has the form
(6), which in turn reduces to (5) by applying j. That the argument
hð5Þ;J i is valid, then follows from principle 3 by the fact that it is an
instance of a valid open argument D obtained by substituting the
valid argument hD1;J i for the free assumption A.
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4. DUMMETT’S PROOF THEORETIC JUSTIFICATIONS

In his book The Logical Basis of Metaphysics, Dummett (1991) de-
scribes and discusses what he calls proof-theoretic justifications of
logical laws, which in many respects follow the approach presented in
the previous section. There are a couple of noteworthy differences
however. The major difference is that Dummett defines validity for
what I call argument skeletons. Another minor one is that the
canonical forms are defined slightly differently. To facilitate a com-
parison of Dummett’s treatment with mine I shall keep the termi-
nology of the previous section when I state Dummett’s definitions. (I
shall ignore some other small differences such as one concerning the
definition of what I call an instance of an argument skeleton. In
Dummett’s definitions of corresponding notions, he happens to pay
no attention to atomic sentences that occur as free assumptions or to
free variables that do not occur in the conclusion or in some free
assumption. The difference may be due to the fact that Dummett does
not operate explicitly with the notion of open and closed argument
(skeleton).)

4.1. Hereditary Canonical Form

Dummett makes the more stringent requirement on the canonical
forms that was noted above (in Section 3.2) to be possible to make in
some cases. He then obtains something that we may call hereditary
canonical forms defined inductively as follows: an argument skeleton
is in hereditary canonical form iff (a) its last step is an introduction,
and (b) in case the introduction does not bind any assumption or
variable, its immediate subarguments are also in hereditary canonical
form. (It is to be assumed that the atomic base specifies introduction
rules for atomic formulas.)

It is easy to see (by induction over the definition of validity) that if
we replace ‘‘canonical form’’ by ‘‘hereditary canonical form’’ in the
definition of validity (i.e., in principles 1 and 2), the extension of the
notion of validity stays the same.2 We may therefore disregard this
difference between Dummett’s definition and mine.

4.2. Leaving out the Justifications

Returning to the major difference between the two definitions, we
may try to phrase in my terminology Dummett’s definition of what it
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is for an argument skeleton to be valid by stating three principles
similar to the ones in Section 3.5:

Principle 1*. A closed argument skeleton in canonical form is valid
if and only if its immediate parts are valid.

Principle 2*. A closed argument skeleton for a sentence A that is
not in canonical form is valid if and only if a closed valid argument
skeleton for A in canonical form can be found effectively.

Principle 3*. An open argument skeleton D is valid if and only if
all those instances of D are valid that are obtained by substituting
closed valid canonical argument skeletons for free assumptions.

These three principles constitute as before an inductive definition.
Leaving out the justifications, as I called them, the notion of validity
now defined is much simpler. It may be simpler than the notion
intended by Dummett, however. If we apply principles 2* and 3*
together to an open non-canonical argument skeleton D for the
formula A, we find that D is now defined to be valid if and only if for
any closed instance Dr of D obtained by a substitution r that sub-
stitutes closed valid canonical arguments for free assumptions in D
and terms for free variables in D, we can find effectively a closed
argument skeleton D0 for Ar. Here it is not required that the argu-
ment skeleton D0 to be found for Ar is in any way related to Dr. It is
only required that for any r there is an effective method to find a
valid closed canonical argument skeleton D0 for Ar, not that there is
an effective uniform method which applied to any Dr finds such a D0.

This may not be intended, and perhaps Dummett’s notion of
validity is instead rendered by principle 1* and a modified combi-
nation of Principles 2* and 3* as follows:

Principles (2–3)*. An argument skeleton D for a formula A that is
not in canonical form is valid if and only if there is an effective
method M such that for any closed instance Dr of D obtained by a
substitution r that substitutes terms for free variables in D and closed
valid canonical arguments for free assumptions in D,M applied to Dr

yields a valid canonical argument skeleton for Ar.
How are the two notions of validity related to each other? Could

it be that an argument skeleton D is valid as defined by principles 1*
and (2–3)* if and only if there are justifying operations J to assign
to the non-introductory steps of D so that the argument hD;J i is
valid as defined by principles 1, 2 and 3? If a closed argument hD;J i
for a sentence A reduces to a valid canonical argument hD0;J i (as
required for hD;J i to be valid by principle 2), then D0 can of course
be found effectively and D0 is an argument skeleton for A in
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canonical form (as required for D to be valid by principle (2–3)*).
But conversely, it is not obvious that given an effective method for
finding a canonical argument skeleton D0 for a sentence A, the
existence of which makes any closed argument skeleton D for A valid
provided that D0 is valid, we can find justifying operations J to
assign to the non-introductory steps of such a D so that hD;J i
reduces to hD0;J i. The two notions are therefore not easily com-
pared to each other.

For Dummett’s notion of validity it holds, as he himself remarks,
that an argument skeleton D for a sentence A from open premisses
A1;A2; . . . ;An is valid if and only if the one step argument

A1;A2; . . . ;An

A

is valid. Thus, regardless of how irrelevant the steps of D are for
inferring A from A1;A2; . . . ;An, D is valid if the corresponding one
step argument is valid. In other words, it is the existence of effective
means for finding a closed valid canonical argument skeleton for A,
given closed valid canonical argument skeletons for A1;A2; . . . ;An,
that makes D valid, not what goes on in the skeleton D. It is these
means and not the skeleton alone that carries epistemic force, and
this was my motivation for including them, i.e., what I have called
justifying operations, in the arguments.

However, it remains to discuss whether the notions developed so
far form a reasonable basis for a theory of meaning which is supposed
to represent the idea that the meaning of a sentence is determined by
how it is established as true.

5. RELATIONS TO VERIFICATIONISM

The verificationism of the logical positivists was an early attempt to
relate the meaning of a sentence to how we establish its truth, i.e.,
how we verify it. The slogan ‘‘the meaning of a sentence is its method
of verification’’ is not very apt however. It seemed both from this
slogan and from what some of the early verificationists said that
knowing the meaning of a sentence involved knowing how to decide
the truth of the sentence in principle.

That a viable verificationism cannot require that a meaningful
sentence is decidable but should relate the understanding of a sen-
tence with the ability to recognize a verification of the sentence when
presented by one was pointed out long ago by Michael Dummett.3
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What determines the meaning of a sentence is thus not its method of
verification but rather what it is to verify it, or what counts as a
verification of it, as Per Martin-Löf (1985) formulates it. Further-
more, there is now a need to single out a class of direct or canonical
verifications – in the first place, they are what is related to meaning.4

The basic idea of verificationism as construed here is thus that the
meaning of a sentence is given by what counts as a direct verification
of it. Gentzen’s suggestion that the meanings of the logical constants
are determined by their introduction rules can be seen as a special
case of this verificationist idea. So as to conform better to this way of
expressing the general verificationist idea, the suggestion may be
slightly reformulated as saying, firstly, that the meaning of a com-
pound sentence in the language of first order predicate logic is given
by what counts as a direct verification of it, and, secondly, that the
forms of these direct verifications are given by the introduction rules,
i.e., a direct verification has the form of an argument whose last step
is an introduction.

Now, an argument cannot count as a direct verification just
because its last step is an introduction, something more must be
required. What must be added is something about the validity of the
argument. The validity of the last step is of course not called in
question – that is part of the essence of Gentzen’s suggestion. What
must be added is thus only that the rest of the argument is valid, i.e.,
that the immediate subarguments are valid. This is precisely how the
validity of an argument in canonical form is defined both by me and
by Dummett, except that an argument for Dummett is what I call an
argument skeleton.

We arrive in this way at the following formulation of Gentzen’s
suggestion: A direct verification of a compound sentence A is the
same as a valid argument in canonical form, i.e., an argument ending
with an introduction whose immediate subarguments are valid, and
this is what determines the meaning of A. In other words, it is the
inductive definition of what it is to be a valid argument for A, which
follows the inductive built up of A, that is proposed to be constitutive
for the meaning of A.

I said in the introduction to this paper that the approach to
meaning that I was going to review had the advantage that the
meaning of a sentence is directly connected with aspects of its use.
There is an obvious connection between assertions and verifications
or valid arguments. Roughly speaking the assertion of a sentence is
warranted iff a verification of the sentence is known. A fundamental
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requirement on the definition of validity of arguments is that it re-
spects this equivalence: a person should be warranted in asserting a
sentence iff she is in the possession of a valid argument for A and
knows it to be a valid argument for A.

Does the definition of validity satisfy this fundamental require-
ment? Consider the case of a simple argument for a closed sentence
A � B, whose skeleton is

A

B
A � B

Dummett counts this skeleton as a valid argument for A � B if there
is an effective method M for finding a closed valid argument for B
given a closed valid argument for A. As already remarked in Section
4, to be in possession of such a skeleton does not amount to very
much, certainly not to be entitled in asserting A � B. It is true that if
we know that it is a valid argument in Dummett’s sense, then we
know that there exists such a method M. But what Dummett calls an
argument, i.e., the skeleton shown above, plays virtually no role here.

This supports my more involved notion of argument, according to
which a valid argument for A � B whose skeleton is as shown above
also contains as a second ingredient a method M that applied to any
valid argument for A yields a valid argument for B. To be in pos-
session of an argument is now to be in possession of such a method
M. But again it can be said that it is not sufficient to be just in
possession of M, we must also know that M is a method which
applied to any valid argument for A yields a valid argument for B.

These considerations may be taken to speak in favour of
counting a demonstration of the fact that M is such a method as
an additional ingredient of a real argument for the truth of A � B,
which was the approach of G. Kreisel (1962). A different response
to these concerns is given by Per Martin-Löf (not in the paper by
him quoted above but in later papers such as Martin-Löf 1995 and
1998). He separates what he calls proofs or proof objects from
demonstrations. A proof (object) is an object in the type theory
developed by Martin-Löf, while a demonstration is something
which shows that an object is of a specific type. For instance, a
canonical proof of A � B is an object of the form kxbðxÞ such that
bðaÞ is a proof of B given that a is a proof of A. What in this way
counts as a canonical proof of A � B determines the meaning of
A � B. But it is the act of demonstrating that something is a proof
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of A � B that warrants the assertion of the truth of A � B. This
approach differs from the verificationist idea that meaning is
determined by how we establish truths. A more detailed compar-
ison with the approach that I have outlined would take us outside
the scope of this essay. We have therefore to leave it at that,
although it must be admitted that the problematic feature of my
approach noted above has not been resolved here.

The discussion so far has concerned the question whether
knowledge of a valid argument for a sentence A is sufficient for the
warranted assertion of A. But what about the necessity of such
knowledge for being entitled to asserting A? Knowing a valid argu-
ment for A implies knowing how to find a valid argument for A in
canonical form. But is it right that when we are entitled to assert a
complex sentence A, we could in principle have arrived at that po-
sition by constructing a canonical argument for A? That the answer is
yes is what Dummett (1991) calls the fundamental assumption of this
approach to meaning. The answer is required to be yes, if the defi-
nition of validity is to respect the equivalence stated above between
an assertion being warranted and a corresponding valid argument
being known.

Dummett (1991) devotes a chapter to a discussion of this funda-
mental assumption, pointing out reasonable doubts that one can have
about it. The doubts have the form of examples of sentences A with
predicates that relate to ordinary empirical discourse and where it
seems reasonable to say that the assertion of A may be warranted
although the speaker knows no valid argument for A (or argument
skeleton for A, the examples function equally well regardless which
definition we choose).

Some of the examples are related to the fact that when we are
concerned with tensed empirical sentences, the possibility of a having
direct verification may be lost or may not yet be at hand. It is obvious
that the notion of valid argument for empirical sentences has to be
more lax than for mathematical ones. We cannot require that the
argument is to give us a method for finding a valid canonical argu-
ment, but have to be satisfied if it demonstrates for sentences in the
past time that a valid canonical argument could have been had at the
time in question, and for sentences in future tense that a valid
canonical argument will be possible to have at the future time in
question.

There are counterexamples that cannot be dealt with in this way
however. In my opinion, the most serious ones concern universal
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sentences in empirical discourse.5 As may be expected, the dis-
cussions of these examples do not result in a suggestion that the
canonical forms of arguments for the various kinds of sentences
can be specified in some different way, which would be to replace
Gentzen’s introduction rules by some other introduction rules. The
examples must rather be understood as casting doubts on the
whole idea that it is possible to specify canonical forms of argu-
ments (or verifications) such that the truth of a sentence can be
identified with the existence of a valid canonical one. In other
words, it is the whole verificationist project that is in danger when
the fundamental assumption cannot be upheld. An essential pre-
requisite for this project is the distinction between direct and
indirect verification as I have argued elsewhere (e.g., Prawitz 1995).

The discussion in this section indicates that the development of
Gentzen’s idea into a full theory of meaning along the lines consid-
ered here is not unproblematic. However, it should be recalled that
here I have essentially confined myself to a review of two closely
related lines of thought, and have only in passing considered alter-
native ways of developing Gentzen’s idea or the general idea of
approaching meaning via proofs.

NOTES

1 When in Prawitz (1971) I started to use the term validity in this connection it was
defined for derivations in given formal systems. To define it for arguments in general

was one of the main ideas of Prawitz (1973).
2 It is assumed in Dummett (1991) that the stronger notion of hereditary canonical
form is needed when one is not confined to justify only given elimination inferences

but is considering arbitrary inferences. As follows from the claim made above
(easily proved by showing that a closed valid argument in canonical form reduces
to one in hereditary canonical form), there is actually no such need.
3 Most explicitely in for instance Dummett (1976).
4 As pointed out in connection with proofs already by, e.g., Dummett (1973) and
Prawitz (1974).
5 I have briefly discussed them in for instance Prawitz (1987).
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Martin-Löf, P.: 1998, ‘Truth and Knowability: on the Principles C and K of Michael
Dummett’, in H. G. Dales and G. Olivieri (eds.), Truth in Mathematics, Clarendon
Press, Oxford, pp. 105–114.

Prawitz, D.: 1971, ‘Ideas and Results in Proof Theory’, in J. E. Fenstad (ed.), Pro-

ceedings of the Second Scandinavian Logic Symposium, North-Holland, Amster-
dam, pp. 235–307.

Prawitz, D.: 1973, ‘Towards a Foundation of a General Proof Theory’, in P. Suppes

et al. (eds.), Logic, Methodology, and Philosophy of Science IV, North-Holland,
Amsterdam, pp. 225–250.

Prawitz, D.: 1974, ‘On the Idea of a General Proof Theory’, Synthese 27, 63–77.

Prawitz, D.: 1987, ‘Dummett on a Theory of Meaning’, in B. Taylor (ed.), Michael
Dummett, Contributions to Philosophy, Kluwer, Dordrecht, pp. 117–165.

Prawitz, D.: 1995, ‘Quine and Verificationism’, Inquiry 37, 487–494.
Prior, A. N.: 1960, ‘The Runabout Inference-Ticket’, Analysis 24.

Department of Philosophy, Stockholm University

106 91 Stockholm
Sweden
E-mail: dag.prawitz@philosophy.su.se

DAG PRAWITZ524



Synthese (2006) 148: 525–571 © Springer 2006
DOI 10.1007/s11229-004-6296-1

PETER SCHROEDER-HEISTER

VALIDITY CONCEPTS IN PROOF-THEORETIC SEMANTICS

ABSTRACT. The standard approach to what I call “proof-theoretic semantics”,
which is mainly due to Dummett and Prawitz, attempts to give a semantics of
proofs by defining what counts as a valid proof. After a discussion of the general
aims of proof-theoretic semantics, this paper investigates in detail various notions
of proof-theoretic validity and offers certain improvements of the definitions given
by Prawitz. Particular emphasis is placed on the relationship between semantic
validity concepts and validity concepts used in normalization theory. It is argued
that these two sorts of concepts must be kept strictly apart.

1. INTRODUCTION: PROOF-THEORETIC SEMANTICS

Proof-theoretic semantics is an alternative to truth-condition seman-
tics. It is based on the fundamental assumption that the central
notion in terms of which meanings can be assigned to expressions
of our language, in particular to logical constants, is that of proof
rather than truth. In this sense proof-theoretic semantics is inher-
ently inferential in spirit, as it is the inferential activity of human
beings which manifests itself in proofs.

Proof-theoretic semantics has several roots, the most specific one
being Gentzen’s (1934) remarks that the introduction rules in his
calculus of natural deduction define the meanings of logical con-
stants, while the elimination rules can be obtained as a consequence
of this definition. More broadly, it is part of the tradition according
to which the meaning of a term should be explained by reference to
the way it is used in our language.

Although the “meaning as use” approach has been quite prominent
for half a century now and has provided one of the cornerstones of the
philosophy of language, in particular of ordinary language philosophy,
it has never prevailed in the formal semantics of artificial and natu-
ral languages. In formal semantics, the denotational approach, which
starts with interpretations of singular terms and predicates, then fixes
the meaning of sentences in terms of truth conditions, and finally defines
logical consequence as truth preservation under all interpretations, has
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always been dominant. The main reason for this, as I see it, is the fact that
from the very beginning, denotational semantics received an authorita-
tive rendering in Tarski’s (1933) theory of truth, which combined philo-
sophical claims with a sophisticated technical exposition and, at the
same time, laid the ground for model theory as a mathematical disci-
pline. Compared to this development, the “meaning as use” idea was a
slogan supported by strong philosophical arguments, but without much
formal underpinning.

There has been a lot of criticism of classical model-theoretic
semantics from the denotational side itself. Examples are partial log-
ics such as situation semantics, and dynamic approaches such as
discourse representation theory and dynamic semantics. These log-
ics reject the idea that total information about the world is always
available and evaluate formulas with respect to certain information
states.1 Another example is Etchemendy’s (1990) critique of classi-
cal consequence, which attracted much attention. However, in main-
stream semantics, there has never been a fundamental reorientation,
which could have turned the “meaning as use” idea into something
that resembles a formalized theory.

Proof-theoretic semantics, as a sidestream development, attempts
to achieve exactly this. As one would expect, it uses ideas from
proof theory as a mathematical discipline, similar to the way truth-
condition semantics relies on model theory. However, just this is
the basis of a fundamental misunderstanding of proof-theoretic
semantics. To a great extent, the development of mathematical proof
theory has been dominated by the formalist reading of Hilbert’s pro-
gram as dealing with formal proofs exclusively, in contradistinction
to model theory as concerned with the (denotational) meaning of
expressions. This dichotomy has entered many textbooks of logic in
which “semantics” means model-theoretic semantics and “proof the-
ory” denotes the proof theory of formal systems. The result is that
“proof-theoretic semantics” sounds like a contradiction in terms
even today.

When I first used this term in the 1980s,2 it was not very com-
mon, although the idea behind it was there in the Swedish school
of proof theory established by Prawitz and Martin-Löf (see Kahle
and Schroeder-Heister 2006). In the meantime, it has gained some
ground and there have been some occasional references to it. Per-
haps it will become more popular within general philosophy in the
backwater of inferentialist approaches such as Brandom’s3, which
more explicitly than ordinary language philosophy attempt to derive
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denotational meaning from inferential meaning, i.e., use the idea
that meaning is rooted in proofs as their starting point.

Strictly speaking, the formalist reading of proof theory is not
any more foreign to the understanding of ‘real’ argumentation than
model theory is to the interpretation of natural language. In order
to apply proof-theoretic results, one has to consider formal proofs
to be representations of proper arguments, just as, in order to
apply model-theoretic methods, one has to consider formulas to
be representations of proper sentences of a natural language like
English. English is not per se a formal language, and arguments
are not per se formal derivations. In this sense, the term “proof-
theoretic semantics” is not any more provocative than Montague’s
(1970) conception of “English as a formal language”. Both proof-
theoretic semantics and model-theoretic semantics are indirect in
that they can only be applied via a formal reading of aspects of
natural language. The basic difference lies in what these aspects
are: proof-theoretic semantics starts with arguments and represents
them by derivations, whereas model-theoretic semantics starts with
names and sentences and represents them by individual terms and
formulas.

As indicated above, it was the Swedish school of proof theory,
which paved the way for a non-formalist philosophical understand-
ing of proofs. Although originally dealing with problems of the
proof-theory of formal systems, Prawitz and Martin-Löf soon real-
ized that many of the concepts and methods developed there had a
non-technical counterpart when looking at formal proofs as formal
representations of “genuine” proofs. In taking Gentzen’s remarks
on the definitional significance of introduction and elimination
rules seriously, they developed the cornerstones of proof-theoretic
semantics.

An immediate predecessor of proof-theoretic semantics was Tait
(1967), who, in his work on the convertibility of terms, developed
concepts which are closely related to those later employed in proof-
theoretic semantics. Another predecessor was Lorenzen (1955), who,
in his operative logic, used arbitrary production rules as definitional
rules from which, by means of an inversion principle4, correspond-
ing elimination rules can be obtained.

In this paper I shall deal with proof-theoretic validity as one of
the basic technical tools developed within proof-theoretic semantics.
As this notion was essentially developed by Prawitz, my exposition
is to a great extent a re-interpretation and, I hope, an improvement
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to his approach. I shall not deal with the broader philosophical
background of “anti-realism” and “verificationism” into which the
concept of validity may be embedded, but mainly with the techni-
cal constructs and their (narrower) philosophical motivation. The
reason for this is, besides lack of space, the fact indicated above
that the desideratum of proof-theoretic semantics is not so much
a general philosophical understanding of its position, but the for-
mal development and philosophical clarification of its fundamental
concepts. One result of this restriction is that I cannot give Dum-
mett’s work the attention it deserves, since his technical notions do
not differ considerably from Prawitz’s. I am well aware that he has
made enormous contributions to the philosophical understanding of
proof-theoretic semantics in general. To a considerable extent it is
due to his work that the general climate is now more in favour of
proof-theoretic semantics than it used to be.5

Validity is a property of derivations, or more general “deri-
vation structures”, which are considered to be representations of
arguments. The format of these derivations is Gentzen-style nat-
ural deduction. In defining validity, attempts are made to jus-
tify arguments by turning certain proof-theoretic methods and
results into semantic conditions, most prominently the following
two: (1) Derivations can be simplified (or made more “direct”)
by certain reduction methods (terminating in normal derivations).
(2) Assumption-free derivations in normal form are canonical (or
“direct”) in the sense that they apply an introduction rule in the
last step. Valid arguments are then defined as derivation structures
which exhibit properties like (1) and (2). However, I shall strictly
distinguish between genuine semantic features and technical prop-
erties used in normalization proofs. This is extremely important, as
Prawitz originally developed his semantic notion of validity along
with adapting certain proof-theoretic concepts proposed by Tait and
Martin-Löf to proofs of strong normalization. My main criticism of
Prawitz will be that in his earlier writings on validity (Prawitz 1971,
1973, 1974) he does not sufficiently distinguish between semantic
concepts and concepts used in proofs of (strong) normalization. I
shall argue that they differ in fundamental respects.6

In spite of much philosophical discussion about meaning and
theories of meaning, no thorough investigation of Prawitz’s valid-
ity concept has been undertaken so far, although this concept is
based on very elementary principles which are very close to Gent-
zen’s original programme of justifying natural deduction. This is
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why I chose this notion as my topic here. I want to leave open
the question of whether validity should be taken as the ultimate
basis of proof-theoretic semantics. I myself tend to favour a different
approach which chooses rules as the unity of semantic investigation.
Whereas in proof-theoretic validity in Prawitz’s sense, derivations
or arguments come first, and rules or consequences are regarded
as steps which preserve the validity of arguments, a rule-based
approach would first distinguish certain individual proof steps and
then compose derivations or arguments from them. Whereas the
first approach is global, dealing with proofs as a whole and impos-
ing requirements on them, the second approach is local, as it inter-
prets individual proof steps without demanding from the very onset
that a proof composed of such single steps have special features.
The rule-based approach has the advantage that the dependency
of global features of arguments on local features of rules can be
investigated separately, which makes this approach more flexible
and capable of dealing with phenomena such as circular reasoning.
Ideas in this direction have been developed in the context of logic
programming jointly with Hallnäs7, and will be dealt with in subse-
quent work.

This paper starts with recalling Gentzen’s characterization of nat-
ural deduction and the way this characterization is turned into
an inversion principle by Prawitz. The semantic validity concepts
proposed are contrasted with concepts used in proofs of (strong)
normalization, which were originally introduced by Tait and Martin-
Löf. Special emphasis is placed on the difference between these
concepts and semantic concepts, by calling those used for nor-
malization “computability” and only the semantic ones “validity”.
Various forms of validity are defined and compared, among them
notions of strict and strong validity which go beyond Prawitz’s defi-
nitions. These notions are then extended to general derivation struc-
tures with arbitrary reductions serving as justifications, where the
definition of a justification differs slightly from that of Prawitz.
Finally, it is argued that proof-theoretic validity and the resulting
notion of consequence is different from, and in a sense more specific
than, constructive validity and consequence based on the notion of
a constructive function.

For lack of space, Martin-Löf’s meaning theory, which may be
correctly viewed as carrying out a whole programme of proof-the-
oretic semantics, cannot be dealt with here (see e.g. Martin-Löf
1995, 1998). For the particular purpose of elucidating proof-theoretic
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validity, this seems to me to be justified, since Martin-Löf’s seman-
tics is not explicitly concerned with formal notions of proof-theoretic
validity. I cannot discuss Lorenzen’s “operative logic” (1955) either,
although it is very close to Gentzen’s programme (at least “in spirit”).
Furthermore, I do not consider categorical approaches to proof-the-
oretic semantics. The discussion about classical vs. intuitionistic logic
is left out as well.8 Even a rudimentary account of these items would
turn this paper into a substantial monograph.

As a general framework, I use the implicational fragment of
intuitionistic propositional logic, i.e. positive implicational logic,
which suffices to demonstrate and exemplify all basic ideas. An
adequate account of implication provides strong guidelines for
the handling of other logical operators. Implication is the most
complicated propositional operator, sharing crucial properties with
universal quantification. The distinction between open and closed
derivations, which will turn out to be semantically fundamental,
is to a great extent due to its presence. It is intertwined with the
notion of “assumption”, which Gentzen gave a prominent role in
logical calculi, and whose proper treatment is the cornerstone of
proof-theoretic semantics.

Logical Preliminaries and Notational Conventions

In this paper, I stick to Prawitz’s tree-based proof notation and
do not use a term calculus via the Curry–Howard correspondence
(although the typed λ-calculus would be a natural candidate). The
tree-based proof notation is philosophically more natural, as proof
terms obtain their philosophical significance through their reading
as codes for “real” proofs.

Following Prawitz, I shall use the following conventions: If a deriva-

tion D ends with A, I shall also write
D
A

. If it depends on an assumption

B, I shall write
B

D or
B

D
A

. This means that the notations D,
D
A

,
B

D and

B

D
A

do not denote different derivations, but just differ in what they make

explicit. The open assumptions of a derivation are the assumptions on
which the end-formula depends. A derivation is called closed if it con-
tains no open assumptions, otherwise it is called open.
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The system of natural deduction I shall use is that described by
Gentzen (1934) and Prawitz (1965). Its positive implicational frag-
ment contains only the schemata →-introduction and →-elimination
(modus ponens):

[A]
B

A→B
→ I

A→B A

B
→E

The reduction of a maximum formula, which is a conclusion of an
application of an introduction inference and at the same time the
major premiss of an elimination inference, is in our restricted frame-
work represented as the schema of →-reduction:

A

D D′

B D′ reduces to A

A→B A D
B B

Occasionally I shall also refer to the reductions for other connec-
tives as described in Prawitz (1965). These reductions will be called
the “standard reductions” (in contradistinction to arbitrary reduc-
tions for generalized derivation structures).

A derivation is in normal form if it cannot be further reduced,
which means that it contains no maximum formula. Prawitz (1965)
showed that by iterated application of reduction steps, every deri-
vation in intuitionistic logic can be normalized, i.e., can be rewrit-
ten as a derivation in normal form.9 One corollary of this result is
that every closed derivation in intuitionistic logic can be reduced to
one using an introduction rule in the last step, as a closed normal
derivation is of exactly that form. I call this the fundamental corol-
lary of normalization theory. As seen below, the fundamental cor-
ollary is philosophically interpreted by requiring that a valid closed
derivation be reducible to one using an introduction inference in
the last step. In this sense, introduction rules describe the basic
meaning-giving inferences.

The normalization result mentioned is also called weak nor-
malization. The strong normalization result says that any reduc-
tion sequence terminates in a normal derivation, regardless of the
order in which reductions are performed. Methods used to prove
strong normalization have provided the basis for semantic validity
concepts.



532 PETER SCHROEDER-HEISTER

2. GENTZEN’S PROGRAMME AND PRAWITZ’S INVERSION PRINCIPLE

Proof-theoretic semantics in the sense discussed in this paper goes
back to certain programmatic remarks in Gentzen’s Investigations
into Natural Deduction, where he gives a semantic interpretation of
his inference rules.

Gentzen’s remarks deal with the relationship between introduc-
tion and elimination inferences in natural deduction.

The introductions represent, as it were, the ‘definitions’ of the symbols concerned,
and the eliminations are no more, in the final analysis, than the consequences of
these definitions. This fact may be expressed as follows: In eliminating a symbol,
we may use the formula with whose terminal symbol we are dealing only ‘in the
sense afforded it by the introduction of that symbol’. (Gentzen 1934, p. 80)

This cannot mean, of course, that the elimination rules are
deducible from the introduction rules in the literal sense of the word;
in fact, they are not. It can only mean that they can be justified by
them in some way.

By making these ideas more precise it should be possible to display the E-inferences
as unique functions of their corresponding I-inferences, on the basis of certain
requirements. (Gentzen 1934, p. 81)

So the idea underlying Gentzen’s programme is that we have “defi-
nitions” in the form of introduction rules and some sort of semantic
reasoning which, by using “certain requirements”, validate the elim-
ination rules.

As indicated in the introduction, I shall not discuss in detail the
philosophical reasons which might support Gentzen’s programme.
For that I would have to refer to Dummett’s work and in particular
to his claim that there are two different aspects of language use: one
connected with ‘directly’ or ‘canonically’ asserting a sentence, and
another one with drawing consequences from such an assertion.10

The first is the primary or ‘self-justifying’ way corresponding to rea-
soning by introduction rules, whereas the second one, which corre-
sponds to reasoning by elimination rules, is in need of justification.
This justification relies on the harmony which is required to hold
between both aspects: The possible consequences to be drawn from
an assertion are determined by the premisses from which the asser-
tion can possibly be inferred by direct means.



VALIDITY CONCEPTS IN PROOF-THEORETIC SEMANTICS 533

Prawitz, in an “inversion principle”11 formulated in his classic
monograph on Natural Deduction of 1965, tried to make Gentzen’s
remarks more precise in the following way.

Let α be an application of an elimination rule that has B as consequence. Then,
deductions that satisfy the sufficient condition [. . . ] for deriving the major premiss
of α, when combined with deductions of the minor premisses of α (if any), already
‘contain’ a deduction of B; the deduction of B is thus obtainable directly from the
given deductions without the addition of α. (Prawitz 1965, p. 33)

Here the sufficient conditions are given by the premisses of the
corresponding introduction rules. Thus the inversion principle says
that a derivation of the conclusion of an elimination rule can be
obtained without an application of the elimination rule if its major
premiss has been derived using an introduction rule in the last step,
which means that a combination

of steps, where {Di} stands for a (possibly empty) list of deductions
of minor premisses, can be avoided.

At first glance, this simply states the fact that maximum formu-
las, i.e. formulas being conclusions of an I-inference and at the same
time major premiss of an E-inference (in the example: A), can be
removed by means of certain reductions, which leads to the idea of
a normal derivation. However, it also represents a semantical inter-
pretation of elimination inferences by saying that nothing is gained
by an application of an elimination rule if its major premiss has
been derived according to its meaning (i.e., by means of an introduc-
tion rule). So the reductions proposed by Prawitz for the purpose of
normalization are at the same time semantic justifications of elimi-
nation rules with respect to introduction rules. His inversion prin-
ciple elaborates Gentzen’s idea of “special requirements” needed for
this justification, by demanding that elimination rules invert intro-
duction rules in a precise sense.

That it corresponds indeed to what Gentzen had in mind can be
seen by taking a closer look at the example Gentzen gives:

We were able to introduce the formula A→B when there existed a derivation of B from
the assumption formula A. If we then wished to use that formula by eliminating the
→-symbol (we could, of course, also use it to form longer formulae, e.g., (A→B)∨C,
∨-I), we could do this precisely by inferring B directly, once A has been proved, for
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what A→B attests is just the existence of a derivation of B from A. (Gentzen 1934,
pp. 80–81)

This may be read as follows: Given the situation

A

D
B D′

A→B A

B

where D is “a derivation of B from the assumption formula A”, and D′

is the derivation showing that “A has been proved”, so that we can use
A→B to obtain B “by eliminating the →-symbol”. Then by means of

D′

A

D
B

we can infer “B directly, once A has been proved [by means of D′]”,
as “A→B attests [. . . ] the existence of a derivation [viz. D] of B

from A”. According to this reading, Gentzen describes the standard
reduction for implication later made explicit by Prawitz (1965) and
used in his normalization proof.

However, although Gentzen’s remarks are correctly read as out-
lining a semantic programme, he himself takes a more formalistic
stance, which is clear from his writings in general and from the con-
tinuation of the passage quoted above:

Note that in saying this we need not go into the ‘informal sense’ [‘inhaltlicher
Sinn’]12 of the →-symbol. (Gentzen 1934, p. 81)

Prawitz (1965) deserves credit to have drawn our attention to the
genuine semantic content of Gentzen’s remarks, though this is not
spelled out in detail in his monograph. Only later in Prawitz (1971)
and in particular in Prawitz (1973, 1974) is it turned into a full-
fledged semantic theory.

3. NORMALIZATION, COMPUTABILITY AND VALIDITY

3.1. Normalization and Computability

Normalization plays a prominent role in the formal background of
proof-theoretic semantics, in particular the result that normal closed
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proofs are in introduction form, i.e., use an introduction inference in
the last step.

Of equal importance is a technical method within normalization the-
ory, which is especially used in proofs of strong normalization. By means
of this method, a certain predicate P of proofs is defined which has
the property that it entails (strong) normalizability. The predicate P

has some flavour of a semantic predicate, and in a kind of correctness
proof it can be shown that every derivation satisfies P , yielding as a
corollary that every derivation is (strongly) normalizable. Such a pred-
icate was first defined by Tait (1967) under the name “convertibility”
and used to demonstrate (weak) normalizability of terms. Martin-Löf
(1971) carried Tait’s idea over from terms to derivations and defined
a corresponding predicate which he called “computability”, proving
(weak) normalization for an extension of first-order logic, called the
theory of iterated inductive definitions. At the same time, Girard (1971)
used this method to prove (weak) normalization for second-order logic.
Again at the same time, it was Prawitz (1971) who emphasized its par-
ticular usefulness for proving strong normalization, calling it “strong
validity”. Since then, it has served as the basis of proofs of strong nor-
malization for a variety of systems.13

In the following I shall speak of computability predicates or the
computability predicate when dealing with this notion as it is used
in normalization proofs, thus adopting Martin-Löf’s terminology.
The term “valid” will be reserved for genuinely semantic notions. I
consider the terminology of Prawitz, who speaks of “validity based
on the introduction rules” (1971, p. 284) in contradistinction to
“validity used in proofs of normalizability” (1971, p. 290), some-
what unfortunate. It is one of the basic claims of this paper that
there are fundamental differences between these two concepts.

I restrict Prawitz’s notion of computability (“validity used in
proofs of normalizability”) to positive implicational logic L, i.e., to
the system with only introduction and elimination rules for implica-
tions as primitive rules of inference. Under this restriction, Prawitz’s
computability notion is basically the same as Martin-Löf’s.

A derivation is in I-form if it uses an introduction rule in the last
step, i.e., if it is of the form

[A]
D
B

A→B.
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Using a term employed by Prawitz (1974) and Dummett (1975) and
now common in proof-theoretic semantics, such a derivation is also
called canonical. Let D�1 D′ mean that the derivation D reduces to
the derivation D′ by applying a single reduction step to a subderi-
vation of D.

DEFINITION OF COMPUTABILITY

(i) A derivation of the form

[A]
D
B

A→B

is computable, if for every

computable
D′

A
,

D′

A

D
B

is computable.

(ii) If a derivation D is not in I-form and is normal, then it is com-
putable.

(iii) If a derivation D is not in I-form and is not normal, then D is
computable, if every D′, such that D �1 D′, is computable.

This is a generalized inductive definition. It uses induction on the
degree of the end formula of the derivation (clause i), and, within each
degree, induction on the reducibility relation14 (clauses ii and iii).

The proof of strong normalization then proceeds by establishing
the following two propositions:

PROPOSITION 1. Every computable derivation is strongly normal-
izable.

PROPOSITION 2. Every derivation is computable.

Proposition 1 is a (nearly) immediate consequence of the definition
of computability. Proposition 2 is based on a kind of correctness
proof, verifying step by step that computability is carried over from
the premisses to the conclusion of an inference step. Other formu-
lations of “computability” differ slightly from the one given here.
However, the basic features remain the same. The resulting normal-
ization proofs all proceed via Propositions 1 and 2.

Computable derivations are closed under substitution with com-
putable derivations, i.e., the following lemma holds:
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SUBSTITUTION LEMMA FOR COMPUTABILITY

If
A1 . . .An

D
B

is computable, where all open assumptions of D are

among A1, . . . ,An, then for any list of computable derivations

Di

Ai
(1≤ i ≤n),

D1 Dn

A1, . . . ,An

D
B

is computable.

Note that the converse direction of the lemma is trivial, as every
assumption Ai is itself a normal, and therefore computable, deriva-
tion of Ai from Ai .

If closure under substitution with computable derivations is
called computability under substitution, the lemma says that comput-
ability implies computability under substitution.

Weaker versions of computability entail (weak) normalization.
Instead of requiring in clause (iii) that every D′, such that D �1 D′, be
computable, we might demand that a certain D′, which is obtained
from D in a particular way (i.e., by performing a particular reduction
step) be computable. This yields the notion defined by Martin-Löf
(1971). We might even weaken this by not referring to a particular
procedure and just postulate in (iii) that D reduces to a computable
D′, without specifying the procedure in the definition (it must then
be specified in the normalization proof, of course).

3.2. From Computability to Validity

Validity is a core notion of proof-theoretic semantics. Prawitz intro-
duced it as a semantic predicate for derivations, in analogy to truth
as a semantic predicate of propositions in model-theoretic seman-
tics. He developed it in connection with computability predicates,
to which it bears a strong resemblance. As his terminology (“strong
validity” for “computability” in our sense) suggests, Prawitz actually
considers computability and validity to be concepts on one scale,
computability being the stronger one. There are several remarks
in his 1971, 1973, 1974 papers, where he deals with both notions,
which indicate that computability is obtained by augmenting valid-
ity, some of them even stating that these extensions make the con-
cept of validity more plausible or convenient.15 However, Prawitz
never explains the exact relationship between these two concepts. In
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particular, he never attempts to formally prove that computability
(strong validity) implies validity – a result one should expect to hold
if the relationship is as simple as the terminology suggests. In his
publications after 1974, Prawitz never returns to computability and
its relation to validity.

In the following I shall argue that, in spite of many similari-
ties, and contrary to Prawitz’s opinion, semantically useful validity
notions must differ considerably from computability. Crucial mod-
ifications are necessary to turn computability into validity. I shall
make the following points:

(1) The notion of computability is not suitable as a foundational
semantic notion, because it stipulates normal derivations as
computable without further justification.

(2) In order to adjust the notion of computability to serve founda-
tional purposes, closed derivations must be given a distinguished
role in the justification of irreducible (= normal) derivations.

(3) This distinguished role of closed derivations includes, as a
semantic condition, their reducibility to canonical form.

Ad (1): Computability is not a semantic notion

According to clause (ii) in the definition of computability, every nor-
mal derivation which is not in I-form, is computable.16 This could
be counted as a semantic clause only if in proof-theoretic seman-
tics we are prepared to consider non-canonical normal derivations
as valid by definition. However, as we have seen, it is one of the
ideas of proof-theoretic semantics in the sense of Gentzen’s pro-
gramme to consider introduction inferences as basic and to jus-
tify all other inferences by them. In other words, only derivations
based on introduction rules should be taken for granted. In any
other case the definition of validity should rely on some justifica-
tion procedure rather than on the syntactic form of derivations. This
is obviously violated by clause (ii), which simply stipulates irreduc-
ible non-canonical derivations as valid. There is no semantic reason
whatsoever to consider non-canonical irreducibility as a definition
case of validity. According to such a definition, the derivation

A→B A

B
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would be valid by definition and not by justification, which is not
what is intended. Modus ponens, as an elimination rule, definitely
needs semantic justification. Of course, for the purpose of proving
normalizability, clause (ii) is absolutely natural, as normal deriva-
tions are trivially (strongly) normalizable. For semantic purposes,
however, we would have to argue that non-canonical irreducible der-
ivations have some special status, which exempts them from justi-
fication. Since there is no argument at hand to support this, using
normal derivations as a starting point in defining validity is an ill-
guided approach.

In contradistinction to clause (ii), clauses (i) and (iii) make good
semantic sense. In terms of validity, clause (i) says that a canoni-
cal derivation of A→B is valid if its immediate predecessor, a der-
ivation of B from A, provides a way of transferring every valid
derivation of A into a valid derivation of B, which corresponds
to the meaning one wants to associate with A→B. Furthermore,
clause (iii) says that a non-canonical derivation may be consid-
ered as valid if it reduces to a valid derivation. This reflects the
idea that non-canonical derivations are valid if they reduce to der-
ivations which are already justified as valid (such as canonical
ones).

Therefore the basic flaw in computability, understood as a seman-
tic notion, is the following implicit assumption:

If D is non-canonical and irreducible (=normal), then D is valid.

Ad (2): Semantically modified computability: open assumptions and
closed derivations

One could try to modify the definition of computability to make
it suitable for a definition of semantic validity. This would mean
that clause (ii) of the definition is dropped and replaced with some-
thing which justifies non-canonical irreducible derivations as valid.
An obvious possibility would be to consider such a derivation as
valid if the replacement of open assumptions with valid derivations
yields a valid derivation of the end formula. This idea would fol-
low the substitution lemma for computability, according to which
computability is the same as computability under substitution. More
formally, clause (ii) would then read as follows (where we now use
the term “valid”, as we are dealing with turning the computability
notion into a semantic concept):
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(ii)* A non-canonical irreducible derivation

A1 . . .An

D
B

where all open assumptions of D are among A1, . . . ,An, is

valid, if for every list of valid derivations
Di

Ai
(1≤ i ≤n),

D1 Dn

A1 . . .An

D
B

is valid.

For example, the one step non-canonical irreducible derivation

A→B A

B

would be considered as valid, if for each pair of valid derivations

D1

A→B
and

D2

A
, the derivation

D1 D2

A→B A

B

is valid. However, a

clause like (ii)* would then no longer proceed by induction on the
complexity of the end formula but on the complexities of the open
assumptions plus that of the end formula, in the example: on the
complexities of A→B,A and B. But then the quantification over all
valid derivations of the open assumptions is no longer feasible, since
these derivations may depend on assumptions of arbitrary complex-
ity. Therefore this is no viable solution.17

The way out of this problem used in semantic definitions of
validity is to use closed valid proofs rather than arbitrary valid
proofs as a basis. Instead of (ii)*, one would then propose the fol-
lowing clause.

(ii)** A non-canonical non-reducible derivation

A1 . . .An

D
B
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where all open assumptions of D are among A1, . . . ,An, is

valid, if for every list of closed valid derivations
Di

Ai
(1≤ i ≤n),

D1 Dn

A1 . . .An

D
B

is valid.

However, even now we are proceeding by induction on the joint
complexity of A1, . . . ,An,B rather than only the complexity of B,
even if we only quantify over closed valid derivations. This is not
compatible with clause (i), where we proceed by induction on the
end formula only. In order to cope with that, we would also have
to change clause (i) to

(i)** A derivation of the form

[A]
D
B

A→B

is valid, if for every closed

valid
D′

A
,

D′

A

D
B

is valid

where this is understood as proceeding by induction on the joint
complexity of open assumptions plus end-formula of a derivation.

The definition based on (i)**, (ii)** and (iii) may be called valid-
ity*. In passing from computability to validity* we have interpreted
open assumptions as placeholders for closed derivations.

Ad (3): The reducibility of closed derivations

Unfortunately, validity* does not yet eliminate the possibility that
irreducible (= normal) derivations are considered valid without any
further justification. In the case of open derivations, this possibil-
ity has been removed, but not so in the case of closed derivations.
Suppose D is a closed non-canonical derivation which is irreducible.
Then clause (ii)** applies, and, as there are no open assumptions, D
is (vacuously) valid*.
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One might argue that there are no closed non-canonical irre-
ducible derivations. However, this is an accidental property of
first-order logic with the standard reductions. Since the notion of
validity should in principle be applicable to more general notions
of derivations and reductions, the formal possibility of closed non-
canonical irreducible derivations must be taken into account. Such
a derivation should simply turn out to be invalid by definition. This
is accomplished by transforming a corollary of the normalization of
proofs into a semantic condition:

A closed non-canonical derivation is valid, if it is reducible to a valid
closed canonical derivation.

It was Dummett in particular who repeatedly stressed as a funda-
mental epistemological principle18 that, if something is known in an
indirect (non-canonical) way, it must be possible to turn this indirect
knowledge into direct (canonical) knowledge. This is part of the rea-
son why this sort of semantics is also called verificationist, and it is
part of the interpretation of Gentzen’s programme of the primacy of
introduction rules: In the closed case an I-rule derivation can always
be found. With this motivation we arrive at Prawitz’s definition of
the validity of derivations.

3.3. Validity of Derivations

We follow Prawitz (1971) in defining validity with respect to atomic
systems S, which are given by production rules for atomic formulas.
Let then L(S) be implicational logic over S, i.e., the system given
by introduction and elimination rules for implication plus the pro-
duction rules of S. We may identify L(S) with the set of all deri-
vations in this system. A system S ′ is an extension of S (S ′ ≥ S) if
S ′ is S itself or results from S by adding further production rules.
As a limiting case, we consider the empty atomic system S0 with-
out any inference rules and with propositional variables as formu-
las, and correspondingly L(S0) as standard implicational logic over
propositional variables. Obviously, as a formal system, L(S0) is the
same as L. It will turn out that validity with respect to S0 is the
same as universal validity when defined in an appropriate way. We
say that D reduces to D′ (D�D′), if D′ can be obtained from D by
applying a (finite) number of reduction steps. As a limiting case, D
reduces to itself. In the context of atomic systems, we also extend
the notion of a canonical derivation. A canonical derivation of an
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atom of S is a derivation in S, whereas, as before, a canonical der-
ivation of a complex formula is a derivation in I-form, i.e., a deri-
vation using an introduction rule in the last step.

Then our first definition of validity corresponding to the one
given in Prawitz (1971) runs as follows:

DEFINITION OF S-VALIDITY (1)

(i) For atomic A, a closed derivation of A is S-valid, if it reduces
to a derivation in S.

(ii) A closed derivation
D

A→B
is S-valid, if D reduces to a

derivation of the form

[A]
D′

B

A→B

such that for every S ′ ≥ S and

every closed S ′-valid
D′′

A
,

D′′

A

D′

B

is S ′-valid.

(iii) An open derivation
A1 . . .An

D
B

, where all open assumptions of D

are among A1, . . . ,An, is S-valid, if for every S ′ ≥ S and every

list of closed S ′-valid
Di

Ai
(1≤ i ≤n),

D1 Dn

A1 . . .An

D
B

is S ′-valid.

This inductive definition proceeds on the joint complexities of the
open assumptions and the end formula of the given derivation.

In view of clause (iii), clause (ii) can be changed to

(ii) A closed derivation of A→B is S-valid if it reduces to a canonical
derivation of A→B whose immediate subderivation is S-valid.

By putting reduction into a clause of its own, the whole defini-
tion can then be equivalently stated as follows:

DEFINITION OF S-VALIDITY (2)

(I) Every closed derivation in S is S-valid.
(II) A closed canonical derivation of A→B is S-valid, if its imme-

diate subderivation is S-valid.
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(III) A closed non-canonical derivation is S-valid, if it reduces to an
S-valid canonical derivation.

(IV) An open derivation
A1 . . .An

D
B

, where all open assumptions of

D are among A1, . . . ,An, is S-valid, if for every S ′ ≥S and for

every list of closed S ′-valid
Di

Ai
(1≤ i ≤n),

D1 Dn

A1 . . .An

D
B

is S ′-valid.

The equivalence of these two definitions of S-validity is easy to
prove. Obviously, every (not necessarily closed) derivation in S is S-
valid, since every closed S-valid derivation of an atom reduces to a
derivation in S. The second definition corresponds to the one pro-
posed by Prawitz (1974, 2006). As explained in the last subsection,
the philosophical motivation behind this definition is that, in the
closed case, derivations in S as well as introduction steps are self-
justifying (clauses I and II), whereas all other steps are justified on
the basis that they reduce to something which is already justified
(clause III), or, in the open case, produce justified closed derivations
when combined with such derivations (clause IV).

The reason for considering arbitrary extensions S ′ of S, is to
block arguments for S-validity based on the underivability of certain
formulas in S. Otherwise, for example, every derivation in L start-
ing with a propositional variable as an open assumption, should be
counted as S0-valid, because there is no closed derivation of a prop-
ositional variable in S0. In this sense, the consideration of extensions
S ′ ≥S is a monotonicity condition for S-validity. S-valid derivations
should remain S-valid if one’s knowledge incorporated in the atomic
system S is increased.19 In fact, it is easy to show that we have a

MONOTONICITY THEOREM FOR S-VALIDITY
A derivation D in L(S) is S-valid iff for every S ′ ≥S, D is S ′-valid.

Investigating the consequences of permitting non-monotonicity of
S-validity is beyond the scope of this paper.

As compared to computability, this definition relies on two cru-
cial insights:

(1) The distinction between closed and open derivations is pri-
mary as compared to that between canonical and non-canonical
derivations. The latter plays the role of a subdistinction within



VALIDITY CONCEPTS IN PROOF-THEORETIC SEMANTICS 545

closed derivations. In the definition of S-validity, we proceed
according to the concept tree

whereas the definition of computability rests on

In S-validity, closed canonical derivations are self-justifying, carry-
ing the burden of semantic justification. In computability, this holds
of non-canonical irreducible (= normal) derivations.20

(2) The reduction clause for closed derivations (clause III) uses
an existence condition corresponding to weak normalization, which
is again due to the self-justifying character of closed canonical der-
ivations. Whereas in computability, self-justifying derivations are by
definition tied to the reducibility concept, viz. as derivations which
are irreducible, in S-validity self-justifying derivations are defined
independently of reducibility and are not trivially available when a
derivation is not reducible, which means that we have to postulate
their existence as a result of reduction.

For our case of implicational logic we can easily show the
following:

SOUNDNESS THEOREM FOR S-VALIDITY
For any S, every derivation in L(S) is S-valid.

3.4. Validity and Universal Validity

Universal validity will be defined for derivations in L. Intuitively, a
derivation in L should be universally valid if it is S-valid for every
S. For that, we must interpret derivations of L in L(S). Let an S-
assignment v be a mapping of propositional variables to S-formulas.
Then for an L-derivation D, Dv is the L(S)-derivation resulting
from D by replacing every propositional variable with the corre-
sponding S-formula assigned to it via v. We can then say that D is
valid in S under v, if Dv is S-valid in the sense defined in the previ-
ous section. D is then called valid in S if it is valid in S under every
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v, and it is called universally valid, if it is valid in S for every S. Now
the following can be shown to hold:

PROPOSITION Let D be a derivation in L. Then D is universally
valid iff D is S0-valid.

Proof. We use the fact that when L is interpreted in L(S), every
extension S ′ ≥S can be viewed as an interpretation of an extension
of S0 via an assignment.

Therefore, from now on we shall use the term “valid” terminologi-
cally as meaning universal or S0-validity.

Then as a corollary of the soundness theorem for S-validity we
have the following:

SOUNDNESS THEOREM FOR VALIDITY
Every derivation in L is valid.

As we have a corresponding theorem for computability (Propo-
sition 2), and as we are so far only considering derivations in im-
plicational logic, computability and validity coincide in the sense
that any computable derivation (i.e., any derivation in implicational
logic) is a valid derivation (i.e., a derivation in implicational logic)
and vice versa. So extensionally, computability and validity coincide.
We can differentiate between them when we consider more general
notions of derivation structures. Then we can give actual counterex-
amples which show that computability and validity differ not only
with respect to their contents, but are in fact extensionally different
concepts (see Section 6). This further substantiates our claim that,
contrary to Prawitz, computability is at best a forerunner to valid-
ity but not a semantic concept in itself.

3.5. Validity Concepts which Imply Normalizability: Strict and Strong
Validity

Our basic semantic argument against computability and for valid-
ity was that irreducible derivations should never be counted as valid
without further justification, i.e., the implication

irreducible implies valid

should not hold by definition. One might, however, expect that the
implication
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valid implies normalizable

holds.21 According to the present definition of validity, normalizabil-
ity is not implied by validity. If we consider intuitionistic logic with
no introduction rule for absurdity ⊥, then according to our defini-

tion of validity,
⊥
D is vacuously valid for any D with ⊥ as the only

open assumption, even if D is not normalizable. Now one might
argue that a semantic justification of open derivations in terms of
substitution with closed valid derivations should only be applied if
the derivation is reduced as far as possible, and not already in a sit-
uation, where D can still be reduced. This means that the substitu-
tion justification in clause (IV) of the definition of S-validity should
be put into action only if all possibilities of obtaining a justifica-
tion by means of reduction are exhausted, i.e., when the derivation
in question is irreducible. Calling this notion “strict S-validity” (or
“strict validity” [simpliciter] for the universal concept), we reach the
following definition:

DEFINITION OF STRICT S-VALIDITY

(I) Every closed derivation in S is strictly S-valid.
(II) A closed canonical derivation of A→B is strictly S-valid, if its

immediate subderivation is strictly S-valid.
(III) A closed non-canonical derivation is strictly S-valid, if it

reduces to a strictly S-valid canonical derivation.
(IV) An open reducible derivation is strictly S-valid, if it reduces to

a strictly S-valid derivation.

(V) An open irreducible derivation
A1 . . .An

D
B

, where all open

assumptions of D are among A1, . . . ,An, is strictly S-valid, if
for every S ′ ≥S and for every list of closed and strictly S ′-valid

Di

Ai
(1≤ i ≤n),

D1 Dn

A1 . . .An

D
B

is strictly S ′-valid.

The difference to the definition of S-validity is that clause (IV)
is split up into clauses (IV) and (V), where the new clause (IV)
demands the reduction of reducible open derivations, while the new
clause (V) is the old clause (IV), but applied only to the irreducible
case. So the conceptual tree of this definition is the following one
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∣
∣
∣
∣
∣
∣

closed

open

∣
∣
∣
canonical
non-canonical

∣
∣
∣
reducible
irreducible

which contrasts sharply with computability, where the reducible/
irreducible distinction is a subdistinction of non-canonical deriva-
tions.

I speak of “strict” rather than “strong” S-validity to distin-
guish it from Prawitz’s notion of strong validity, which corresponds
to computability, and from associations with strong normalization.
Furthermore, I should like to reserve “strong S-validity” for a
notion defined below for which this association is justified. Strict
S-validity as considered here is indeed a notion on the same scale
as S-validity. It is obvious that strict S-validity implies S-valid-
ity, but not necessarily vice versa.22 The corresponding universal
notion of strict validity (simpliciter) is defined as in Subsection
3.4.

Let us define (weak) normalizability inductively as follows:

DEFINITION OF NORMALIZABILITY

(i) Every canonical derivation is normalizable if its immediate sub-
derivation is normalizable.

(ii) Every non-canonical normal derivation is normalizable.
(iii) Every non-canonical reducible derivation is normalizable, if it

reduces to a normalizable derivation.

We can then formulate as a theorem that strict validity implies
(weak) normalizability.

THEOREM. Every strictly valid derivation is normalizable.

By strong S-validity we denote a further strengthened concept,
which implies strong normalization.

DEFINITION OF STRONG S-VALIDITY

(I) Every closed derivation in S is strongly S-valid.
(II) A closed canonical derivation of A→B is strongly S-valid, if its

immediate subderivation is strongly S-valid.
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(III) A closed non-canonical derivation D is strongly S-valid, if D is
reducible, and if every D′, such that D�1 D′, is strongly S-valid.

(IV) An open reducible derivation D is strongly S-valid, if every D′,
such that D �1 D′, is strongly S-valid.

(V) An open irreducible derivation
A1 . . .An

D
B

, where all open

assumptions of D are among A1, . . . ,An, is strongly S-valid,
if for every S ′ ≥ S and for every list of closed and strongly

S ′-valid
Di

Ai
(1≤ i ≤n),

D1 Dn

A1 . . .An

D
B

is strongly S ′-valid.

Obviously, strong S-validity implies strict S-validity.
A corresponding universal notion of strong validity (simpliciter)

is defined as in Subsection 3.4. We extend the definition of norm-
alizability to a definition of strong normalizability by replacing “if
it reduces to” with “if every derivation it reduces to in a single step
is” in clause (iii) of this definition. In analogy with the case of strict
validity, we can show that strong validity implies strong normaliz-
ability.

THEOREM. Every strongly valid derivation is strongly normalizable.

There are also soundness theorems for strict and strong [S-]validity.

SOUNDNESS THEOREMS FOR STRICT AND STRONG
S-VALIDITY
All [S-]derivations are both strictly and strongly [S-]valid.

With strict and strong validity we have obtained concepts which
are semantically satisfying and at the same time imply weak and
strong normalization, respectively.

4. VALIDITY AND COMPUTABILITY BASED ON ELIMINATION RULES

A central idea of proof-theoretic semantics is to consider one set of
rules as basic and justify derivations based on other rules with respect
to this first set of rules as valid. The standard approach is to consider
the introduction rules as primitive or “self-justifying” (Dummett).
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However, as envisaged by Prawitz23, one might try an approach from
the opposite direction, starting with elimination inferences. Prawitz’s
presentation is very sketchy. I reconstruct it as follows:

According to the I-rule conception, if in
D
A

the formula A is

the conclusion of an introduction rule whose premiss derivation is
S-valid, then D is S-valid by definition. If A is not derived by an
introduction rule, D is S-valid if it can be reduced to an S-valid der-
ivation. Analogously, one might postulate within an E-rule concep-
tion that, if all applications of elimination rules to the end-formula
A of D yield S-valid derivations, then D is itself S-valid by defini-
tion. If no elimination rule can be applied to A, then D is S-valid
if it can be reduced to an S-valid derivation. (Obviously, the latter
case only arises when A is atomic.)

This suggests the following definition.

DEFINITION OF S-VALIDITY BASED ON ELIMINATION
RULES

(I) Every closed derivation in S is S-validE.

(II) A closed derivation
D

A→B
of A→B is S-validE, if for every

S ′ ≥ S and every closed S ′-validE
D′

A
, the (closed) derivation

D D′

A→B A

B

is S ′-validE.

(III) A closed derivation
D
A

of an atomic formula A, which is not a

derivation in S, is S-validE, if it reduces to a derivation in S.

(IV) An open derivation
A1 . . .An

D
B

, where all open assumptions of

D are among A1, . . . ,An, is S-validE, if for every S ′ ≥ S and

for every list of closed S ′-validE
Di

Ai
(1 ≤ i ≤ n),

D1 Dn

A1 . . .An

D
B

is

S ′-validE.

Clause (IV) is identical with clause (IV) in the definitions of S-
validity in Section 3.3, i.e., open assumptions in derivations are
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interpreted in the same way as they were previously. Clauses (I) and
(III) can be conjoined to form the single clause

(I/III) A closed derivation
D
A

of an atomic formula A is S-validE, if

it reduces to a derivation in S.

Using the main reductions, it can again be shown that all deriva-
tions in L(S) are S-validE.

As Prawitz remarks, this approach only works for logical con-
stants with “direct” elimination rules such as →, ∧ and ∀. There
is no way to extend this to constants like ∨ and ∃ with “indirect”
elimination rules.

Corresponding to the procedure in Section 3.5, notions of strict
S-validityE and strong S-validityE can be defined such that strict
S-validityE implies weak normalizability and strong S-validityE

implies strong normalizability.24

There is also a corresponding notion of computability based on
elimination rules for the purpose of strong normalization proofs.
Actually, this notion is more common in today’s presentations than
computability based on introduction rules, as long as one does not
have to deal with ∃ or ∨. For example, Troelstra and Schwichten-
berg (1996) define computability as follows:

DEFINITION OF COMPUTABILITY BASED ON ELIMINA-
TION RULES

(1) For atomic A,
D
A

is computableE, if
D
A

is strongly normalizable.

(2)
D

A→B
is computableE, if for every computableE

D′

A
,

D D′

A→B A

B
is computableE.

Similar to computability based on introduction rules, this notion
again has the feature that normal derivations – here even normal-
izable ones – are considered computableE without further justifica-
tion, which is natural for proving normalization, but cannot be used
for a semantic foundation.

As a characteristic feature of the defintions of validityE and com-
putabilityE, it might be noted that the notion of reduction does not
come in until the atomic stage is reached (in the definition of com-
putabilityE in the form of a derivation being strongly normalizable).
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In the terminology of terms, one might say that everything is played
down to the atomic level by means of term application, whereas the
I-rule conceptions were based on what corresponds to term substi-
tution.

The approach sketched here is not the only possible and per-
haps not even the most genuine way of putting elimination rules
first. If one really tried to dualize the I-rule approach by putt-
ing “deriving from” rather than “deriving of” in front, one should
develop ideas such as the following: A closed derivation from A

should be a derivation of absurdity from A, and a derivation
A

D
B

should be justified, if, for every closed valid derivation
B

D′ from B,

A

D
B

D′
is a closed valid derivation from A, etc. This, however, would

be in conflict with the asymmetry of derivations, which usually have
exactly one end formula, but possibly more than one open assump-
tion. So full dualization would perhaps lead to some variant of a
single-premiss/multiple-conclusion logic. A genuine E-rule approach
might be desirable if one wanted to logically elaborate ideas like
Popper’s falsificationism by establishing refutation as the basis of
reasoning.25

5. DERIVATION STRUCTURES, JUSTIFICATIONS AND ARGUMENTS

The soundness theorems for derivations in L are interesting meta-
logical facts. However, of a semantic notion of validity we expect
more than that. Validity should be a distinguishing feature, telling
that some derivations are valid while others are not. This is quite
analogous to the notion of truth which states that some proposi-
tions are true, whereas others are not true. A result showing that
every proposition is true, making truth a general feature of proposi-
tions, would be considered inadequate. Similarly, there should be a
more general notion of derivation within which the notion of valid-
ity determines a subclass. It is easy to construct such derivations by
simply combining arbitrary rules, not only the rules which belong to
L. For example, a single-step derivation in L of the form
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A→B

B

should turn out not to be valid, because for certain S ≥ S0, not
every closed S-valid derivation of A→B becomes a closed S-valid
derivation of B when B is appended at the end of this derivation.26

This means that we must be able to talk about arbitrary deriva-
tions which are not built according to a previously given set of rules.
This is important particularly if one would like to pose the ques-
tion of completeness, i.e., the question of whether every valid deriva-
tion can be represented in L. As long as [S-]validity is only defined
for L or L(S), completeness is absolutely trivial. It simply says that
every [S-]valid derivation is a derivation, as there are no candidates
for derivations which are not in L or L(S). This problem does not
arise when we are dealing with computability and normalizability
only. Computability, as an auxiliary concept to prove normalization,
is not necessarily a concept which aims at classifying derivations as
computable and non-computable, at least not primarily. In the con-
text of computability, we would simply like to show that all deriva-
tions exhibit the property of being normalizable.

Since by “derivations” one normally understands derivations in a
given system, one should choose a different term for candidates of
derivations. I propose talking of derivation structures.27 Hence, the
purpose of this section is to define a notion of a derivation struc-
ture and of the [S-]validity of derivation structures in such a way
that derivations in L or L(S) become special derivation structures
generated by particular rules of inference. Such a definition will also
require generalizing the notion of reducing a derivation, which in
the standard case is only defined for elimination inferences (in the
implicational fragment only modus ponens), provided its major pre-
miss results from applying an introduction rule. In principle, reduc-
tions should be definable for derivation structures ending with any
non-introduction inference.

In order to develop a notion of derivation in a generalized sense,
we make use of concepts from the theory of natural deduction and
extend them to arbitrary formula trees. A derivation structure over
the language of implicational logic (and possibly over atomic sys-
tems S as well) can be defined as follows: A derivation structure is
a formula tree together with a discharge function. A discharge func-
tion for a formula tree is a function which associates with every top
formula28 a formula occurring below (on the same branch in the



554 PETER SCHROEDER-HEISTER

tree).29 The intended reading is the following. Suppose A1, . . . ,An

and B occur in the tree as follows:

where each Ai is the value of the discharge function f for top-
formulas Ci1, . . . ,Cimi

, i.e. f (Ci1) = . . . = f (Cimi
) = Ai . Then B is

inferred as a conclusion from the premisses A1, . . . ,An, where at
this application, for each i (1≤ i ≤n), the assumptions Ci1, . . . ,Cimi

in the derivation of each Ai are discharged. This means that the
step depicted can be viewed as governed by the following inference
rule:

[C11, . . . ,C1m1 ] [Cn1, . . . ,Cnmn
]

A1 . . . An

B
R.

Conversely, an inference rule of the form R can be used to cre-
ate a step in a derivation structure, where the Cij above the Ai

describe the appropriate discharge function f (Ci1)= . . .=f (Cimi
)=

Ai , where if all Cij are missing there is no discharge function with
value Ai , and where in the absence of all Ai we are left with B

as an axiom. In this way, inference rules can be extracted from a
derivation structure, and we can check if a given set of inference
rules allows us to generate this derivation structure. This means that
every occurrence of a formula in a derivation structure uniquely
determines a rule leading to it; in particular, it uniquely determines
the rule applied in the last step. This rule is the most specific
rule which just describes the derivation step in question. Borrow-
ing a term from the philosophy of science, it may be called the
minimal covering rule of this derivation step. We may then define
a generality order on rules, according to which rules which are
more general than the minimal covering rule allow one to gener-

ate this derivation step as well. For example, the rule
[C]
A

B

may be

considered more general than the rule
A

B
, as it not only allows
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one to pass from A to B, but also to discharge the assump-

tion C at the same time. So if
A

B
is the minimal covering rule

of a step in a derivation structure, this step may also be viewed

as resulting from the application of
[C]
A

B

. The possible generality

orders depend on various parameters. In the given example, it
is essential that “vacuous discharging” of assumptions be permit-
ted. This implies in particular that issues of substructural logics
may come into play. I cannot discuss these points here. In what
follows I shall apply the usual structural conventions common
in natural deduction, such as viewing sequences of assumptions
[Ci1, . . . ,Cimi

] as sets, permitting vacuous discharging of assump-
tions etc.30

It should be emphasized that rules are understood as “concrete
rules” rather than rule schemata. Others (such as Prawitz 1973,
p. 231) would speak of instances of rules instead. Thus, when talk-
ing of modus ponens

A→B A

B

in a general fashion, I would refer to this as a rule schema, whereas,
if modus ponens for particular formulas A and B is meant, I speak
of a rule. There are various options for capturing the notion of a
rule in relation to that of a derivation structure. In the terminology
used here, a rule of the form R might be applied in the last step of
different derivation structures. Such a derivation structure may be
written as

[C11, . . . ,C1m1 ] [Cn1, . . . ,Cnmn
]

D1 Dn

A1 . . . An

B

(for concrete D1, . . . ,Dn) and viewed as an application of R. This
means that even a (concrete, non-schematic) rule is uniform in the
sense that all applications follow the same pattern. A different view
would be to define a rule simply as a set of such patterns, meaning
that the applications of a rule are in no way structurally related.31
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According to our definition,

A→B

B

is a (very simple) derivation structure. Therefore, once we have
defined S-validity and validity for derivation structures, we are in
the position to state that this derivation structure is not valid. Now
why should

A→B

B

be invalid, whereas a corresponding instance

A→B A

B

of modus ponens is obviously valid? Both rules share the feature that
they are not (self-justifying) introduction rules. However, for modus
ponens a reduction procedure is available which helps generate a
valid derivation when valid derivations of the premisses are given,
whereas for

A→B

B

no such procedure is at hand. So non-validity is due to the lack of
appropriate reductions. On the other hand, the one-step derivation
structure

A→(B →C)

B → (A→C)
(�)

should be counted as valid, even if it is not a derivation in L and
no standard reduction applies. Here, to ensure validity, we must add
a new reduction, which is different from the standard reduction. For
example, if we use the reduction step

then the derivation (�) would indeed turn out as valid according to
our definition of validity.32
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So what needs to be changed is not so much the notion of valid-
ity itself, but the notion of reduction the definition of validity refers
to. This fits in very well with the general idea of reduction. Reduc-
tions serve as justifying procedures for non-canonical steps, i.e.,
for steps, which are not self-justifying. When we consider validity
for arbitrary derivation structures, we should not only consider the
topological structure of derivations, but also generalize their reduc-
tions. This means that a more appropriate concept would be that of
a derivation structure combined with a set of permitted reductions,
which need not coincide with the set of standard reductions used in
the normalization of derivations in L.

This is exactly the step taken by Prawitz (1973) and in his later
publications (see Prawitz 2006). I present it in modified form, where
the modifications do not only affect terminology. By an argument I
understand a pair 〈D,J 〉, where D is a derivation structure and J
is a justification consisting of a set of reductions. This conforms with
our previous talking of derivations in a particular system like L, as
in such a system certain standard reductions are available.

A reduction is a pair

D1 �D2,

also read as

D1 reduces to D2,

which associates a derivation structure D2 with the derivation struc-
ture D1, such that D2 has the same end formula as D1 and no open
assumptions beyond those in D1 (but possibly less assumptions). We
say that this reduction is assigned to D1, or that it is a reduction for
D1. If it belongs to a justification J , we say that it is assigned to D1

via J . If D1 is an application of a rule R, we call D1 �D2 a reduc-
tion for R (remember that an application of a rule R is a deriva-
tion applying this rule in its last step). By J (R) or JR we denote
the subset of J containing all reductions for R via J . Conversely,
if jR is a set of reductions for R, then we may compose some J as
the union of all jR for a given set of rules R. It is not expected that
jR comprise reductions for all potential applications of R; as a lim-
iting case, jR may even be empty. Furthermore, it is not excluded
that there might be more than one reduction for the same derivation
structure. This corresponds to the idea that there might be “alterna-
tive justifications” for the same derivation structure. Reductions for



558 PETER SCHROEDER-HEISTER

introduction rules are also not excluded in principle, although they
are of no real use as introduction rules are self-justifying without
any need for reduction. The only constraint we have to impose on a
justification J is that it be closed under substitution in the follow-
ing sense.

Closure under substitution:

If the reduction

A1 . . .An

D � A1 . . .An

D′

is in J , then for any
D1

A1
, . . . ,

Dn

An
,

D1 Dn

A1 . . .An

D
�

D1 Dn

A1 . . .An

D′

is in J as well.

So a justification J in our sense is nothing but a proof reduction
system, for which closure under substitution holds.33 If J is a jus-
tification, then J ′ is called an extension of J (J ′ ≥J ) if J ′ results
from J by adding reductions such that closure under substitution
continues to hold. In other words, an extension of J is any super-
set of J which is itself a justification.

This definition differs considerably from Prawitz’s, as he uses a
so-called “consistency” requirement for justifications which restricts
the formation of extensions, and perhaps even disallows alternative
reductions for the same derivation structure. As I see it, this con-
sistency requirement plays a role only if strong normalization is the
aim, which is not in the centre of interest when the semantic con-
cept of validity is defined. Adding reductions for the same deriva-
tion structure may only be detrimental to strong validity, as this
introduces new reduction sequences not previously considered.

Normally, the set jR of reductions for R will be given schemati-
cally, which means that it does not depend on the particular appli-
cation of R. When R is an instance of a uniform rule schema, the
reductions for R are often given schematically in the more gen-
eral sense that they are independent of the particular formula which
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occurs in R, as in the case of the standard reduction for implica-
tion

mp :

A

D
B D′

A→B A

B

�
D′

A

D
B

.

(If we wanted to specialize this to particular formulas A and B,
we would write mpA→B .) However, this is not mandatory, and it
is not excluded that different applications of the same rule or
applications of different rules which are instances of the same
rule schema receive entirely different reductions. Only with respect
to the substitution of derivation structures for open assumptions
are reductions schematic, as required by closure under substitu-
tion.

A derivation structure D reduces in one step to a derivation struc-
ture D′ (D �1 D′), if D′ results from D by finitely often applying a
reduction to a substructure of D. Here, a substructure of D is a sub-
tree of D with the discharge function f restricted to assumptions
whose values under f occur above the end formula of D. A deriva-
tion structure D reduces to a derivation structure D′ (D �D′), if D′

is identical with D or results from D by a finite number of one-step
reductions. It is important to note that reductions apply to deriva-
tion structures, given a justification J . So we could more explic-
itly write D�J D′ rather than D�D′. Reductions cannot change or
generate justifications, which means that a notion such as 〈D,J 〉�
〈D′,J ′〉 is not defined.

Let L∗(S) be the logic of arguments over S, which may be iden-
tified with the set of arguments 〈D,J 〉, where the derivation struc-
ture D is built up from implicational formulas over formulas of S

as atoms, and J is a justification whose reductions are defined for
such derivation structures. As a limiting case, we again have L∗(S0),
in short L∗, which uses only propositional variables as atoms. Stan-
dard implicational logic L would then be obtained by considering
the set of all 〈D,J 〉 such that D is a derivation in standard impli-
cational logic, whereas J is fixed for all derivations and comprises
exactly the standard reductions.

Then the S-validity of arguments 〈D,J 〉, which is the same as
the S-validity of derivation structures D with respect to justifica-
tions J , is defined as follows:
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DEFINITION OF S-VALIDITY FOR ARGUMENTS

(I) Every closed derivation in S is S-valid with respect to J (for
every J ).

(II) A closed derivation structure

A

D
B

A→B

is S-valid with respect to

J , if its immediate substructure
A

D
B

is S-valid with respect to J .

(III) A closed non-canonical derivation structure is S-valid with
respect to J , if it reduces, with respect to J , to a canonical
derivation structure, which is S-valid with respect to J .

(IV) An open derivation structure
A1 . . .An

D
B

, where all open

assumptions of D are among A1, . . . ,An, is S-valid with
respect to J , if for every S ′ ≥S and J ′ ≥J , and for every list

of closed derivation structures
Di

Ai
(1≤ i ≤n), which are S ′-valid

with respect to J ′,

D1 Dn

A1 . . .An

D
B

is S ′-valid with respect to J ′.34

In clause (IV), the reason for considering extensions J ′ ≥J of jus-
tifications, in addition to extensions S ′ ≥ S of atomic systems, is
again, in my view, a monotonicity constraint. It is obvious that the
following holds:

MONOTONICITY OF S-VALIDITY (FOR ARGUMENTS)

An argument 〈D,J 〉 in L∗(S) is S-valid iff for every S ′ ≥S and J ′ ≥
J , 〈D,J ′〉 is S ′-valid.

The corresponding universal concept is then defined as follows: If
v is an assignment of S-formulas to propositional variables, then for
a J comprising reductions for arguments in L∗, J v is defined as the
set of reductions which acts on derivations Dv in the same way as J
acts on D (i.e., J v is the homomorphic image of J under v). Then
an argument 〈D,J 〉 in L∗ is defined universally valid iff for every S

and every v, 〈Dv,J v〉 is S-valid. Again we can prove:
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PROPOSITION Let 〈D,J 〉 be in L∗. Then 〈D,J 〉 is universally
valid iff 〈D,J 〉 is S0-valid.

This means that we can continue to use the term “valid” (now with
respect to some J ) interchangeably for both universal and S0-validity.

It is obvious how notions of strict S-validity for L∗(S) and of
strict validity for L∗ can be defined. We can also prove (weak) nor-
malization from strict validity. However, as mentioned above, for
strong validity, problems arise with our unrestricted notions of jus-
tifications J and extensions J ′ ≥J .

Suppose J is the set of standard reductions. Then it is obvious
that all derivations in L(S) are valid arguments with respect to J ,
and all derivations in L are universally valid with respect to J . So
the “new” concept of validity is a generalization of the “old” con-
cept, which yields the same results for derivations in standard im-
plicational logic.

The basic difference between derivations in the old sense and
arguments is, of course, that soundness no longer holds in every
case; it simply depends on the justifications provided, as was
intended by the introduction of the general notion of an argument.

Returning to our previous example, we can now specify what is
meant by the validity of the one-step derivation

A→(B→C)

B→(A→C)
. (�)

This derivation is obviously valid with respect to the standard
reductions of implicational logic extended with the reduction given
by (��).35 We may ask whether completeness of intuitionistic logic,
or at least of minimal or positive implicational logic holds in the
sense that for any derivation structure, which can be justified as valid
(i.e., which is valid with respect to some justification), a derivation
in L of its end formula from its open assumption formulas can be
found. That this is indeed the case was posed by Prawitz as a con-
jecture (1973, p. 246), without his being able to indicate so far how
it might be proved.

In addition to validity in the sense sketched here, Prawitz also
defines a notion of computability for arguments, which he (unfor-
tunately) calls strong validity. It is not surprising that he is able to
establish strong normalization of minimal logic with respect to the
general context of arbitrary justifications, given a notion of “consis-
tent” extensions of justifications. I cannot present this here. From
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my point of view, his general computability concept suffers from the
same defect as did the less general computability concept dealt with
in Sections 3 and 4. Again, Prawitz has to consider irreducible non-
canonical arguments as strongly valid, the only difference being that
irreducibility is now taken with respect to a justification J , which is
not confined to the standard reductions (1973, p. 239; 1974, p. 74).

6. THE RELATIONSHIP BETWEEN COMPUTABILITY, VALIDITY AND
NORMALIZABILITY: COUNTEREXAMPLES

In Section 3, we claimed that computability and validity are cru-
cially different, particularly by arguing that normal derivations need
to be justified semantically. However, at that stage we were not able
to give counterexamples establishing this difference, as extensionally
the concepts were identical, comprising all derivations in L. Now
with respect to the generalized concept of an argument, we can pro-
vide counterexamples.

We understand the computability of an argument 〈D,J 〉, i.e. the
computability of D with respect to a justification J , in the follow-
ing sense, which leads to weak normalization, and compare it with
the validity of D with respect to J .

DEFINITION OF (WEAK) COMPUTABILITY OF
ARGUMENTS

(i) A derivation structure of the form

[A]
D
B

A→B

is computable with

respect to J , if for every J ′ ≥J and every
D′

A
computable with

respect to J ′,

D′

A

D
B

is computable with respect to J ′.

(ii) If a derivation structure D is not in I-form and is normal
(= irreducible) with respect to J , then it is computable with
respect to J .

(iii) If a derivation is not in I-form and is not normal with respect
to J , then D is computable with respect to J , if D reduces with
respect to J to a D′ which is computable.
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Counterexample 1: Computability of 〈D,J 〉 does not imply validity
of 〈D,J 〉
We construct an argument 〈D,J 〉 in such a way that 〈D,J 〉 is
closed, non-canonical and normal, and therefore computable, but
not valid. Choose a closed non-canonical derivation structure D
ending with a non-atomic formula, e.g.,

(1)
[B→C]

(B→C)→(B→C)

B→C
.
(→ I)(1)

Choose J in such a way that with D no reduction is associated
(e.g., take J to be empty). Then 〈D,J 〉 is computable, because it
is irreducible. However, 〈D,J 〉 is not valid, because it cannot, as
required for validity, be reduced to a canonical derivation structure,
since no reduction for D is available in J .

Counterexample 2: Validity of 〈D,J 〉 does not imply computability of
〈D,J 〉
We consider 〈⊥,→〉-logic, i.e., a system with a logical constant ⊥,
for which there is no introduction rule. In such a system, the der-

ivation
⊥
A

, and therefore

(1)
[⊥]
A (1)⊥→A

is valid with respect to any

J . Now for some B, let J be chosen in such a way that
B

⊥ is

irreducible. Let J furthermore be chosen such that
B

⊥
A

reduces to

itself with respect to J , i.e., the reduction for
B

⊥
A

is non-terminating.

Then

(1)
[⊥]
A (1)⊥→A

is not computable with respect to J , because for

computable
B

⊥ ,

B

⊥
A

is not computable (with respect to J ).36
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It can easily be seen that these counterexamples also hold for
strict validity instead of validity. Furthermore, they hold for strong
validity, when computability is defined in the strong sense (demand-
ing in clause (iii) that all one-step reductions lead to computable
derivations).

It might be added that Counterexample 1 is at the same time a
counterexample showing that normalizability does not imply valid-
ity.37 Similarly, Counterexample 2 shows that normalizability does
not imply computability. The latter is not surprising, as computabil-
ity is a stronger concept than normalizability, using infinite branch-
ing when quantifying over substitution instances of open derivation
structures.

7. LOGICAL CONSEQUENCE AND THE VALIDITY OF INFERENCE
RULES

It is natural that the S-validity of an inference rule

A1 . . . An

A

with respect to a justification J , should mean that the one-step der-
ivation structure of the same form is S-valid with respect to J . We
can even define the S-validity of an inference rule which allows the
discharging of assumptions, such as the generalized rule

[C11, . . . ,C1m1 ] [Cn1, . . . ,Cnmn
]

A1 . . . An.
B

This rule is called S-valid with respect to J , if for all S ≥S0, all J ′ ≥

J , and every list of derivation structures
Ci1, . . . ,Cimi

Di

Ai

(1≤ i ≤n),

which are S-valid with respect to J ′, the derivation structure
D1 . . . Dn

B
is S-valid with respect to J ′.

This gives rise to a corresponding notion of consequence.38

Instead of saying that the rule

A1 . . . An

A

is S-valid with respect to J , we may say that A is a consequence
of A1, . . . ,An with respect to S and J (A1, . . . ,An |=S,J A); if we
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consider universal validity with respect to J , we say speak of con-
sequence with respect to J (A1, . . . ,An |=J A); and finally, if there
is some J such that universal validity holds for J , then we may
speak of logical consequence (A1, . . . ,An |=A). Corresponding to the
case of rules discharging assumptions, we obtain a notion of conse-
quence

�1 ⇒A1, . . . , �n ⇒An |=S,J A

for sets of formulas �i . This is to express that the rule

[�1] [�n]
A1 . . . An

A

is S-valid with respect to J , i.e., we have some notion of implication
in the antecedent of |=, which is independent of whether the logical
constant of implication is available in our language.

This goes crucially beyond any classical notion of consequence.
In proof-theoretic semantics, we use (mostly implicitly) some struc-
tural notion of implication throughout, which is due to the fact that
rules can discharge assumptions. As a structural concept it is com-
parable to the comma as a structural conjunction. This structural
notion of implication (“⇒” in my terminology) has been used in
generalized concepts of inference rules. It is also important for the
formulation of a basic sequent calculus in theories of definitional
reflection (see Hallnäs 1991, 2006, Schroeder-Heister 1991b, 1993).

It should be emphasized that it is extremely misleading to write
a valid rule or consequence as

A1 . . . An

A
j

with j being understood as the justification of the step from
A1, . . . ,An to A. In simple (or “direct”) cases like modus ponens

A→B A

B
mp

the reduction mp (which is actually a reduction schema) is indeed a
justification of this single step. However, in a case like

A→(B →C)

B → (A→C)
j
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with j being the reduction given by (��), j alone does not suffice to
justify this step, as the result of using j , given a valid derivation of
the premiss A→(B→C), uses modus ponens. So the result of apply-
ing j is valid only if the modus ponens reduction mp is available.
This again means that the step

A→(B →C)

B → (A→C)

is justified only with respect to some J , where J comprises both j

and the modus ponens reduction mp. Thus

A→(B →C)

B → (A→C)
{j,mp}

or

A→(B→C) |={j,mp} B→(A→C)

would be an appropriate notation. What is involved in the justifica-
tion of single inference steps is often a whole reduction system, not
a single justifying reduction.

This makes proof-theoretic consequence differ from constructive
consequence according to which

A1 . . . An

A

might be defined as valid with respect to a constructive function f ,
if f transforms valid arguments of the premisses A1, . . . ,An into a
valid argument of the conclusion A. Actually, it is not always possi-
ble to extract such a constructive function from our proof reduction
system, as a reduction system J serving as a justification need not
be deterministic, which means that it merely generates a construc-
tive relation on arguments. In any case, the notion of a justification
as a proof reduction system presents an intensional analysis of the
transformation of arguments which is more fine-grained and more
specific than approaches based on the abstract notion of a construc-
tive function.
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NOTES

1 See Muskens et al. (1997), Blamey (2002) and the references therein.
2 First in print in Schroeder-Heister (1991c).
3 See especially Brandom (2000), where the relationship to Dummett’s and Gent-
zen’s approaches is expressed very clearly.
4 Actually, the term “inversion principle” was coined by Lorenzen.
5 For similar reasons I do not deal with projects like that of Tennant, who com-
bines an anti-realist meaning theory with an alternative approach to relevant logic
(see Tennant 1987, 1997).
6 In his later writings, in which he focuses on semantic aspects, Prawitz does not
explicitly return to the relationship with normalization.
7 See Hallnäs (1991, 2006), Hallnäs and Schroeder-Heister (1990, 1991), Schroe-
der-Heister (1991a, 1992, 1993, 1994b).
8 Tait (2006) presents some ideas on how to deal with classical logic in proof-
theoretic semantics.
9 In addition to Prawitz (1965), the monographs by Tennant (1978), Troelstra and
Schwichtenberg (1996) and Negri and von Plato (2001b) can be recommended as
introductory references.
10 See especially Dummett (1991).
11 Named following Lorenzen (1955).
12 Quotes by Gentzen.
13 See the recent paper by Joachimski and Matthes (2003), which contains many
references to the literature.
14 More precisely: induction given by the operator associating with a set of der-
ivations X of a formula the set of those derivations which reduce in one step to
a derivation in X.
15 See Prawitz (1971, p. 289); Prawitz (1973, p. 238).
16 In other renderings of computability, all normal derivations are computable by
definition, not only those which are not in I-form. For the definition of comput-
ability chosen here, this follows as a lemma.
17 It is bound to fail due to the impredicative character of the substitution
lemma, when it is turned into a definition. “Impredicative” here means that com-
putability is defined by quantifying over all substitution instances obtained by
substituting arbitrary computable derivations.
18 In the context of natural deduction derivations it is called the “fundamental
assumption”, see Dummett (1991, p. 254).
19 I suppose that Prawitz had something similar in mind (see Prawitz 1971, p. 276).
In later papers he ceases to consider extensions S ′ ≥S, considering only extensions of
justifying procedures (see Section 5).
20 This does not mean that the S-validity of closed and of open derivations is
defined separately. These two cases occur intertwined in the same derivation. This
is due to the fact that the immediate subderivation of a closed canonical deriva-
tion of A→B is a derivation of B from the assumption A.
21 This is not exactly the converse “valid implies normal”, which is, of course, wrong.
22 Again some emphasis has to be placed on “necessarily”, as in the case of in-
tuitionistic logic, all derivations are strictly S-valid, i.e., strict S-validity and S-
validity coincide in this case.
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23 Prawitz (1971, p. 289f. [= appendix A.2]).
24 However, in the case of strict S-validityE (but not in the case of strong S-valid-
ityE), we would have to distinguish between reducible and irreducible derivations
not only in the open case, but also in the closed case, i.e., clause (II) should only

be applicable if
D

A→B
has been reduced as far as possible, meaning that it is

irreducible. Otherwise, we cannot prove that
D

A→B
is weakly normalizable given

that

D D′

A→B A

B
is weakly normalizable. (In the case of strong normalizability

this is trivial.)
25 Dummett (1991, Ch. 13, pp. 283–286) attempts to develop some kind of a
“genuine” E-rule approach (within the standard setting of derivations with mul-
tiple premisses and single conclusions).
26 For example, if A and B are propositional variables, we may choose S as hav-
ing no axiom and A ⇒ B as the only inference rule. Then there is an S-valid
derivation of A→B, but no S-valid derivation of B.
27 Prawitz (1973) speaks of “argument schemata” (with arguments being closed
argument schemata), Prawitz (2006) of “argument skeletons” (with arguments
being argument skeletons together with justifications).
28 More precisely, we should talk of top formula occurrences. I do not always ter-
minologically distinguish between formulas and their occurrences. It will always be
clear from the context what is meant.
29 The use of discharge functions was introduced by Prawitz (1965, pp. 20–31). Here
it is used in the generalized form as proposed in Schroeder-Heister (1984a).
30 A corresponding notion of rule and derivation structure is spelled out in detail
in Schroeder-Heister (1984a,b).
31 Prawitz (1973, p. 31) follows such a general approach, calling (〈D1, . . . ,Dn〉,A)

an inference (= rule instance), whenever
D1 . . . Dn

A
is a derivation structure.

32 Step (�) is reduced not directly, but indirectly by invoking modus ponens in the
reduction result. See the final remarks in Section 7.
33 Technically, this proof reduction system can be viewed as a higher-order term
rewriting system (it is of higher order due to the assumption structure corre-
sponding to λ-abstraction).
34 See Prawitz (1973, p. 236; 1974, p. 73; 2006). Prawitz does not consider exten-
sions of atomic systems S.
35 It is not valid with respect to (��) alone – see the final remarks in Section 7.
36 The intuitive reason for this behaviour is the following:

⊥
A

is always valid as
there is no closed valid derivation of ⊥. However, for open normal derivations

B

⊥ , the reduction of
B

⊥
A

can be made non-terminating by means of an appropri-

ate J . (Note that we do not choose
B

⊥ to be simply ⊥, because then the example

would not work for strict validity, as the reduction for
⊥
A

would not terminate.)
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37 Actually, normalizability is implied by computability, but this fact is not used
in the counterexample.
38 See also Prawitz (1985).
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J. E. Fenstad (ed.), Proceedings of the 2nd Scandinavian Logic Symposium (Oslo
1970), North Holland, Amsterdam, pp. 63–92.

Hallnäs, L.: 1991, ‘Partial Inductive Definitions’, Theoretical Computer Science 87,
115–142.

Hallnäs, L.: 2006, ‘On the Proof-Theoretic Foundation of General Definition The-
ory’, Synthese (this issue).

Hallnäs, L. and P. Schroeder-Heister: 1990, ‘A Proof-Theoretic Approach to Logic
Programming. I. Clauses as Rules’, Journal of Logic and Computation 1 (1990/91),
261–283.

Hallnäs, L. and P. Schroeder-Heister: 1991, ‘A Proof-Theoretic Approach to Logic
Programming. II. Programs as Definitions’, Journal of Logic and Computation 1
(1990/91), 635–660.

Joachimski, F. and R. Matthes: 2003, ‘Short Proofs of Normalization for the Sim-
ply-Typed λ-calculus, Permutative Conversions and Gödels T’, Archive for Math-
ematical Logic 42, 59–87.

Kahle, R. and P. Schroeder-Heister: 2006, ‘Introduction: Proof-Theoretic Seman-
tics’, Synthese (this issue).
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PATRIZIO CONTU

THE JUSTIFICATION OF THE LOGICAL LAWS REVISITED

ABSTRACT. The proof-theoretic analysis of logical semantics undermines the re-
ceived view of proof theory as being concerned with symbols devoid of meaning, and
of model theory as the sole branch of logical theory entitled to access the realm of
semantics. The basic tenet of proof-theoretic semantics is that meaning is given by

some rules of proofs, in terms of which all logical laws can be justified and the notion
of logical consequence explained. In this paper an attempt will be made to unravel
some aspects of the issue and to show that this justification as it stands is untenable,

for it relies on a formalistic conception of meaning and fails to recognise the fun-
damental distinction between semantic definitions and rules of inference. It is also
briefly suggested that the profound connection between meaning and proofs should

be approached by first reconsidering our very notion of proof.

1. INTRODUCTION

Logical semantics can be thought of as a system of principles which
purport to justify a certain set of logical laws or rules of inference.
The justification takes place by showing the laws in question to be
valid by virtue of the meanings of the logical constants. Thus, a
semantic theory contains the specification of the meanings of the
logical constants and the justification of a certain set of rules of
inference. By its very nature, logical semantics answers at least the
following questions:

The extensional one: which rules are valid?
The intensional one: why are they valid?

In the following, I will sketch how the proof-theoretic approach to
semantics justifies the logical laws, and eventually I will point to what
I take to be some of its main problems. By the proof-theoretic
approach to semantics I mean roughly the attempt at providing an
explanation of the meanings of the logical constants and of the
concept of logical consequence in terms of proofs rather than truth.

This approach originates on the one hand from the foundations of
constructive mathematics, and on the other hand from the verifica-
tionistic theory of meaning first put forward by Michael Dummett.
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Thus the emphasis will be mainly on the constructive meaning of
the logical constants, and I will concentrate on the intensional
question above.

2. SEMANTIC DEFINITIONS AND RULES OF INFERENCE

The most obvious feature of a justification is that two things are
involved: something which is justified, and something in terms of
which it is justified. For the time being, let me say without further
discussion that what is justified by a semantic theory is a certain set of
rules of inference or logical laws, and that the justifying principles are
semantic definitions.

A semantic definition is the specification of the meaning of a
logical constant in terms of some distinguished semantic notion.

In model-theoretic semantics, for example, the meaning of a log-
ical constant is defined to be its behaviour in compound statements
having the constant under consideration as the principal operator,
with respect to the notion of truth in a model.

When we explain the intended meanings of constructive logical
constants, we take the notion of proof to be the basic semantic notion
instead. Such explanations usually go under the name of BHK
interpretation. A clause of the BHK interpretation has in general the
form

Pr u ðxÞ , aðxÞ
(to be read as follows: x is a proof of the statement form u if and only
if x satisfies the condition a).

For example, if u is of the form A! B, the condition a states that
x must be a method or a function transforming any proof of A into a
proof of B.

Now the question arises of which rules of inference are justified by
these semantic definitions. Of course, the definition yields immedi-
ately the following rules:

I
aðxÞ

Pr u ðxÞ E
Pr u ðxÞ

aðxÞ
Call these rules semantic (or definitional) rules. Given the close
resemblance of Gentzen’s rules of natural deduction for intuitionistic
logic to the clauses of the BHK interpretation, one can think of such
rules as a formal translation of the semantic principles, provided one
keeps in mind the following facts.
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First, in general the translation is not always faithful to the content
of the semantic definition, that is, the intended meaning may fail to be
preserved by the rules that build up a formal system. One example is
given by the standard I-rule for implication. As has been pointed out
on several occasions by Dag Prawitz, while for the assertability of
A! B it is intuitionistically required that any function be available
which transforms each proof of A into a proof of B, the formal
translation confines the constructibility of such a function to the
conceptual resources of a given formal system. Thus, one main result
of the translation process is the switch from a genuinely semantic
viewpoint to a formalistic one.

Secondly, the rules of inference may not be faithful to the form of
the semantic definition. In other words, some rules – specifically,
elimination rules for disjunction and the existential quantifier – do
not correspond directly to the rules that can be obtained in an
obvious way from the semantic definition. The reason is that while
semantic definitions are meant to fix the meaning of the logical
operators, rules of inference are devised to serve the purposes of
deduction, i.e., they are formulated so as to be useful in deduction.
Consider for example the definition of the existential quantifier:

BHKð9Þ p proves 9xAðxÞ iff p ¼ ha 2 D; pi and p proves AðaÞ:

The natural semantic elimination rule from this definition is the fol-
lowing:

pproves 9xAðxÞ
p proves AðaÞ

where p is obtained simply by inspection of p. Now, such a rule would
not be very useful in inference, because we would be able to apply it
only in those cases in which we already possess the proof p having the
required properties. This shows a general feature which applies to all
elimination rules: their usefulness lies in the fact that they are
applicable to those propositions for which no proof is available, or
whose proof is not in canonical form, that is, in the form specified by
the definition.

We might then drop the requirement that p be in canonical form,
and thus formulate a more acceptable rule of inference. Call this rule
a generalised semantic (or definitional) rule. But by so doing, we would
completely lose the connection between p and p, that is, we would
have no clue of how to obtain p once given p. This illustrates the
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other important feature of elimination rules (and of rules of inference
in general), i.e., the fact that they must provide a simple method for
obtaining the proof in the conclusion given the proof(s) in the pre-
misses. For some logical constants, e.g., implication, this can be
achieved in quite a direct way from the definitional elimination rule.
Given assumptions A! B and A, simply take the first assumption to
be a function that when applied to the second assumption yields the
conclusion B, and you have obtained a formal derivation of B from A
even though you did not already have it in the premisses. Thus in the
case of implication elimination the formal rule can be seen as
encoding an abbreviation, or rather a simulation, of the process
which is described by the generalised semantic rule. In the case of
disjunction and the existential quantifier, on the other hand, the need
to specify the proof in the conclusion calls for some structural
modification of the semantic rule. Assuming that there is a proof of
9xAðxÞ, we reason as follows. By the definitional rule, there is a proof
of AðaÞ for some a. Then, if any B not containing a is provable from
AðaÞ, it is provable from the sole premiss 9xAðxÞ (or more precisely,
from the premiss that there is a proof of 9xAðxÞ). Since we exploit the
definition only as a means of justifying the assumption of the exis-
tence of a proof of AðaÞ, we do not need to know how to construct
that proof, for the piece of reasoning that we are carrying out will end
up by discharging such an assumption.

Thus we have provided an informal justification of the standard
rules of inference on the basis of the semantic definitions. For the
purposes of formal deduction, the syntactic viewpoint is trivially the
one to be preferred. Rules of inference build up a formal system, so
that the kind of theoretical framework in which we are reasoning is
precisely determined; and such rules are formulated in such a way as
to be useful in inference. The main consequence of this, however, is
that at the formal level, elimination rules allow for the construction
of non-canonical proofs, thus leading to a remarkable asymmetry
between (formal) introduction and elimination rules.

3. GENTZEN–PRAWITZ JUSTIFICATIONS

Thus elimination rules do not in general act on, and do not give rise
to, canonical proofs, i.e., proofs in the form specified by the defini-
tion. So one might conclude that they do not have a definitional
character after all, and this conclusion may have been the reason that
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has led to the fairly widespread conviction that introduction rules are
somehow more basic than elimination rules.

This view dates back to Gentzen’s remark that I-rules are the
definitions (in a loose, non-literal sense of the word) of the logical
operators, whereas E-rules are consequences thereof, in that they
exploit the meaning fixed by I-rules. It is to be noted, however, that
Gentzen understood this asymmetry in a purely formalistic way, for
he thought that the systematic relation between rules only depends on
their formal structure. As he explicitly pointed out, we do not need to
refer to the meaning of the symbols involved: ‘‘Es braucht hierbei
nicht auf einen ‘inhaltlichen Sinn’ des Zeichens � Bezug genommen
zu werden’’ (Gentzen 1935, p. 189). This implies that the meaning
that can be read off from a rule is only what the rule says within the
formal system it belongs to. Call this the formal meaning of a sign.
Later writers have extended this kind of argument to the general
theory of meaning, in which what is involved is not the structural
features of a formal system but the ‘real’ (or intended) meaning of
logical signs (see e.g., Prawitz 1985; Martin-Löf 1985).

The view that I-rules are more basic gives rise to a different kind of
justification, not a justification of rules from semantic definitions, but
a justification of rules from a distinguished class of other rules, which
is identified with the class of I-rules. The justification runs as follows.

(1) First we assume that every inference represented by an appli-
cation of an introduction rule is automatically valid.

(2) Secondly, we assume that every complex statement, if assertible
at all, must be capable of being asserted by means of an argu-
ment whose last step is given by an application of one of the
introduction rules for the principal operator of the statement in
question. This second clause, which has been called the ‘‘fun-
damental assumption’’ by Dummett (cf. Dummett 1991), en-
sures that introduction rules exhaust the meaning.

Under these assumptions we are able to justify elimination rules. By
way of example, suppose that we have a proof p of A! B. Then by
(2) p is a method that yields a new proof p0 in canonical form, that is

½A�
p0

B

A! B
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Now any application of an E-rule turns out to be eliminable, i.e.,

½A� p00

p0 A
B p00 V p0

A! B A
B B

And this serves as a justification of the elimination rule, for the con-
sequences that it entitles to draw are already contained in the proof in
canonical form. The claim is therefore that logical validity originates
from introduction rules alone (see e.g., Prawitz (1965), p. 165). The
main question to be tackled here is whether this claim is warranted by
the justification above.

4. THE STATUS OF THE FUNDAMENTAL ASSUMPTION

We have seen that the fundamental assumption plays an essential role
in justification procedures. First of all, observe that it consists of two
steps.

(1) First, postulate that the relevant definitional construction can
always be obtained, that is, the construction which defines the
meaning of the logical constant in question.

(2) Then apply the I-rule to such construction.

Since the I-rule is already assumed to hold, the only relevant step is
the postulational one. As already mentioned, what is at stake for
most authors is not the formal meaning of these rules, but their
relevance in determining the ‘real’ meaning of the logical signs. As
such, our problem is a genuinely semantic one. So in order to see
what step (1) amounts to, it seems useful to consider some semantic
construals of inference rules.

The general requirement that an inference rule should meet is, of
course, that it be truth-preserving. As Per Martin-Löf has often
pointed out, the explicit form of an inference rule is thus the following:

A1 true; . . . ; An true

A true
(where A1; . . . ; An, A are propositions, possibly depending on other
assumptions).

There is at present no general agreement on how the notion of
truth should be understood from a constructive viewpoint.
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4.1. Existence-based Interpretation

Some people hold the view that truth should be identified with
provability in principle, in order to be able to espouse constructivism
while escaping relativism. According to this view, we have the
equation

Truth of A ¼ Provability in principle of A

¼ There exists a (canonical) proof of A

Here the notion of existence is not codified by means of an existential
quantifier, because the realm of proofs is not a well-defined domain
of quantification.

On this construal of the notion of truth, we can say that an
inference rule must be existence-preserving, whereby existence means
existence of a proof. Thus the general form of a rule is

There exists a proof of A1; . . . ; There exists a proof of An

There exists a proof of A

Interpreted in this way, an inference rule is postulational in character,
for it postulates the existence of a proof of the conclusion under the
assumption of the existence of proofs of the premisses.

The reason why we state the rule for arbitrary proofs and not only
for canonical proofs, is that, as already pointed out, in general, rules
are applied when no canonical proofs are available.

4.2. Possession-based Interpretation

An alternative view of the constructive notion of truth identifies the
truth of a proposition with the actual possession of a proof of it. That
is, we have the equation

Truth of A ¼ Possession of a proof of A

If we subscribe to such a view, then rules of inference are rather
required to be possession-preserving, where again by possession we
mean possession of a proof. Thus the general form of a rule is

I possess a proof of A1; . . . ; I possess a proof of An

I possess a proof of A

Assuming that I possess the proofs as stated in the premisses, I can
inspect such proofs and see (given some definitions) that I actually
possess a proof as claimed in the conclusion. Therefore we could also
say that this is an inspection-based interpretation of rules of inference.
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4.3. Now which Construal should be Preferred?

As far as I-rules are concerned, both interpretations seem to be
acceptable. Consider for example implication again. Assuming that
there is a hypothetical proof of B from A, it is of course correct to
conclude that there is a proof of A! B; and assuming that we
possess a hypothetical proof of B from A, we can also safely conclude
that we possess a proof of A! B.

Things are different when it comes to E-rules. While E-rules can
correctly be interpreted as existence-preserving, they are not, in
general, possession-preserving. We can interpret modus ponens as
follows:

ðaÞ There exists a proof of A! B

There exists a hypothetical proof of B from A

But we cannot in general formulate modus ponens as a possession-
preserving rule, because from the fact that we possess a hypothetical
proof of A! B it does not follow that we also possess a hypothetical
proof of B from A. This is only correct when the proof of A! B that
we possess is in canonical form, but then the application of the E-rule
gives rise to a redundant step. The usefulness of E-rules lies precisely in
the fact that they are applicable in those cases in which no canonical
proof, or any proof at all, is available. This is reflected by the fact that
they are not possession-preserving. This, at least, holds good when we
concern ourselves with the genuine semantic interpretation of rules of
inference. As already pointed out, the formal translation of the
semantic rule (i.e., usual modus ponens) does provide us with a
hypothetical proof on the assumption that we possess a proof of
A! B. But this is only an abbreviation (from the point of view of the
constructive semantics based on the BHK interpretation) of the real
semantic rule for the purposes of formal deduction.

It is then apparent that ðaÞ is none other than one of the usual
formulations of the fundamental assumption (for the reason
explained above, I am identifying the fundamental assumption with
the sole step (1)), that is

ða�Þ There is a proof of A! B

There is a canonical proof of A! B

Therefore on the first construal of rules of inference, the E-rule and
the fundamental assumption seem to amount to the same thing.

There is, however, a more careful formulation of the fundamental
assumption, since it is not only postulated that the canonical proof
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exists, but it is also required that I know how to construct it if I
possess an arbitrary proof. Therefore we have

ðbÞ I possess a proof of A! B

I know how to construct a canonical proof of A! B

Or alternatively,

ðcÞ (There is a proof of A!BÞ=ðThere is a method, i.e., the proof

in the premiss of providing a canonical proof of A! BÞ

What is added in ðbÞ is a better explanation of the relationship
between premiss and conclusion form an epistemic viewpoint,
whereas in ðcÞ a better explanation is added from a nonepistemic
viewpoint. In both cases the mere postulational character of the rule
ða�Þ is changed into a more precise explanation of how to obtain the
postulated proof. But besides this, nothing is added to the fact that at
the semantic level modus ponens is a postulational rule. So ða�Þ on
the one hand, and ðbÞ–ðcÞ on the other hand, are just two different
ways of making explicit the semantic content of the formal rules,
given some assumptions; the difference lies essentially in the amount
of information which is provided.

Therefore it seems that the conclusion that the semantic content of
the E-rule is tantamount to the fundamental assumption holds good
for the more accurate formulation as well.

If the previous conclusion is correct, the very idea of justifying
rules from other rules should be abandoned, for in order to carry out
this justification we need to resort to full definitions anyway. In other
words, the justifications of E-rules presupposes both rules obtained
by a semantic definition, and the justification is in this sense circular.
One might perhaps object that some sort of circularity is inherent in
any kind of justification of the logical laws, so that the previous
argument is beside the point. But the main purpose of the justification
procedure was to obtain the content of elimination rules from the sole
content of the introduction rules, as pointed out before, and it seems
to me that this cannot be achieved. So the justifying principles are
semantic definitions after all, as I suggested in Section 2, and not
some selected class of rules.

Before proceeding any further it seems useful to take stock of this
argument and examine the relationship between semantic definitions
and the rules they give to in its full generality. As we have seen, from
a BHK clause we obtain the obvious semantic rules
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I
aðxÞ

Pr u ðxÞ E
Pr u ðxÞ

aðxÞ
It is of course understood that the variable x refers to the same object in
the definiens and in the definiendum. But when we formulate the def-
inition in terms of rules of inference, this can no longer be maintained
as far as the E-rule is concerned. This is due to the fact that an E-rule is
only useful if it is applicable in those cases in which no canonical proof
is available. So the elimination rule should rather be formulated as

E
Pr u ðxÞ

aðyÞ
where x and y in general denote different objects. This is what we
called the generalised semantic rule in Section 2. We also saw that the
main stumbling block for the usefulness of such rules is the fact that
they do not provide any method for constructing the proof in the
conclusion. Thus the two more careful formulations of the funda-
mental assumption are two ways of making sense of the E-rule, by
saying what the relation is between x and y.

So we can conclude that the E-rule is equivalent to the funda-
mental assumption, when its semantic content is made fully explicit.

One can perhaps distinguish between what an E-rule does and
what it claims.

What it does is provide a non-canonical means of proving prop-
ositions. This is the usual syntactic interpretation.

What an E-rule claims, is that a canonical proof can always be
constructed, provided there is a proof at all. To justify this claim, we
need to resort to the same claim. So in this sense nothing is gained.

5. A POSSIBLE OBJECTION ANSWERED

An objection might be raised against this conclusion by arguing that
the principle that we have called the fundamental assumption is not a
real assumption, but arises instead from our reflection in the meta-
language on the fact that the introduction rule exhausts the meaning.
According to this account, we just see that the introduction rule
exhausts the canonical assertability conditions, and we express this in
the form of a principle. Therefore, although the elimination rule may
be recognised to be equivalent, in its semantical formulation, to the
fundamental principle, the justification is not circular because it arises
by reflection on meaning and not by making any assumptions.
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However, the claim that the fundamental principle arises by pure
reflection is rather dubious. Here, by pure reflection I mean reflection
in which no further assumptions are involved. For this is tantamount
to saying that reflection is infallible, that there are no other inter-
pretations of the rule but the chosen one. But it seems that there are
many other interpretations, depending on our intentions and pur-
poses. Here, of course, I am rejecting the view that there is just one
correct logic that can be discovered by pure philosophical reflection.
If we refuse to resort to this conception of pure reflection, we should
recognise that there are as many correct logics as there are sound
semantic principles.

6. GENTZEN’S ORIGINAL CLAIM

So far, by examining the semantic content of rules, I have argued
against the view that logical validity originates solely from the
meaning fixed by the introduction rules. But as observed, Gentzen
meant his remark to apply to the formal meaning of logical signs.
Should we then say that his claim holds good at least as far as the
formal meaning of rules is concerned? First of all, note that if we
confine ourselves to e.g., the standard formal systems for intuition-
istic logic, no fundamental assumption is involved anymore, for by
means of normalisation procedures it can be proved that a proof in
normal form can always be obtained. This, however, does not imply
that elimination rules do not contribute to determining the meaning
of the logical signs. Another feature of the formal system is that
elimination rules cannot be dispensed with in spite of normalisation.
This is the formal counterpart to the fact that their usefulness lies in
being applicable to assumptions for which no proof is provided. If we
want to analyse assumptions, we have to resort to elimination rules.
Thus, what a formal elimination rule does is to say what the case
would be if the assumptions were true, i.e., if they had a proof, or, as
in the case of disjunction and the existential quantifier, to exploit the
consequences of this. So we can take elimination rules as mimicking
at the formal level the content of (postulational) semantic rules.
Given some assumptions, instead of constructing the relevant
canonical proof(s), we suppose we already have such constructions,
and in our subsequent reasoning we build upon such hypothetical
possession. This makes deduction possible. Without this method we
could not prove relevant theorems in our formal systems. Insofar as
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we are concerned with the formal meaning of logical signs, i.e., the
content that can be read off from the rules of the formal system they
belong to, it is clear that if any rule is not eliminable, then it is
essential to determining the formal meaning. I take this to be a
tautology. The significance of the non-eliminability of E-rules has
been generally overlooked, probably due to the fact that their role in
deduction has not been adequately emphasised. Thus, even according
to the formalistic approach, it is not true that logical validity origi-
nates solely from the meaning fixed by the introduction rules.

Gentzen’s ‘‘formalistic’’ view may be related to the observation
that elimination rules are the formal inverse of introduction rules:
given this feature, we need only to take into account their structural
relationship, and therefore can disregard their meanings. On the
other hand, the claim about the definitional character of introduction
rules seems to be really intensional and not easily reconciled with this
formalistic stance. We face here what is arguably the original sin of
the proof-theoretic approach to semantics as we know it: the attempt
at drawing meaning-theoretic consequences from the peculiar fea-
tures of certain formal systems. Since these features are contingent –
there are alternative systems – a deeper conceptual analysis is needed.

Let us consider e.g., the notion of inversion. Its general structure
can be represented by means of the abstract algebraic properties of
the logical operations, which are made explicit in the language of
category theory by the concept of adjointness (see e.g., MacLane
1998). An adjoint situation determines a pair of symmetric rules, such
as (in the case of exponentiation):

I
f : C� A! B

f� : C! ðA) BÞ E
f� : C! ðA) BÞ
f : C� A! B

where, roughly speaking, the E-rule corresponds to modus ponens
(for modus ponens may be interpreted as saying that if there is a
proof of A) B then there is a proof of B from A). Now, while the
language of category theory does not yield a satisfactory account of
the complex semantics of intuitionistic proofs that was outlined
above (e.g., no distinction is made between semantic and syntactic
rules of inference), it does provide a different framework within which
some ideas about rules and inversion no longer appear plausible.
Within such a framework it would be very unnatural to claim that
some rules are more basic than others, and this suggests that the bias
towards some subclass of the rules originated from the peculiar
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syntactic characteristics of the formalism adopted, rather than from a
truly intensional analysis of meaning.

7. THE PRAGMATISTIC APPROACH

Let us now briefly examine the view that assumes the elimination
rules as basic and attempts to justify the introduction rules. Just as
the previous approach is related to a verificationistic theory of
meaning, this alternative view is inspired by the pragmatistic principle
according to which the consequences of our assertions determine the
meaning of the asserted sentences. More precisely, we have here the
following assumptions.

(1) Every inference represented by an application of an elimination
rule is valid.

(2) Pragmatistic fundamental assumption (PFA): Any consequence
of a statement must be capable of being derived by means of an
argument whose first step is given by an application of one of
the elimination rules for the principal operator of the statement
in question (where the statement is the main premiss of the
inference).

The justification of introduction rules is now fairly simple: whenever
we draw any consequences from a statement A, by PFA we can draw
them by first applying an elimination rule for that statement, so that
if we now append the application of a standard introduction rule for
A we obtain a redundant step which can be dispensed with. This is, of
course, simply a different interpretation of the situation described in
Section 3.

In spite of the duality between the PFA and the verificationistic
fundamental assumption (VFA), it should be noted that there is a
striking difference with respect to the previous justification argument.
Indeed, in analogy with VFA, we can analyse PFA as consisting of
two steps:

(A) Apply one of the elimination rules to a certain statement A.
(B) Postulate the existence of a proof of any consequence of A

starting with the result of the application of an E-rule.

Unlike the downward procedure, however, here there is no relation
whatsoever between the postulated proof and the definitional con-
struction, so that in the case at hand the FA does not coincide (in any
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sense) with the rule being justified. Therefore the upward justification
procedure does not result in the form of circularity that we detected
in the former justification structure.

Elimination rules are concerned with definitional constructions
only insofar as they simulate them in their conclusions, which means
that we have to turn to (A) itself rather than (B). In other words, the
downward justification is related to the semantic definitions only in
the derived way, which is the main characteristic of E-rules.

What our assumption says is that the E-rules for a certain state-
ment A – besides being valid – are the only rules by means of which
we are entitled to draw consequences from it. Given A, we can infer in
one step a certain set v of simulated constructions, which by virtue of
PFA-(A) is the maximal set of constructions inferred in one step from
A. Not only do we know that given A, a corresponding set v of
simulated constructions must hold; we also know that no other
constructions can be so inferred in one step. We are then actually
claiming that v makes explicit the whole content of A, or in other
words, that v is definitional and thus equivalent to A. Therefore the
inverse rule must hold as well, and the upward justification just
confirms this.

Unlike the downward justification, here we are not confronted
with a real form of circularity: it is only a matter of choosing axioms.
But we cannot claim that the E-rules alone bear all the content of the
logical operators, for we always need a further closure principle.

The remarkable fact about E-rules is that by means of them we
have switched from genuine constructions to simulated ones.
Whenever the premisses are not facts but hypotheses, the conse-
quences are simulations.

8. CONCLUDING REMARKS

To my mind, the preceding discussion results in two basic remarks.

(1) Introduction and elimination rules are symmetric when de-
rived straightforwardly from definitions, but they become asym-
metric when they are meant as rules of inference. The application of
an introduction rule is an act of synthesis: given a certain structure,
we recognise that it amounts to a previously defined notion. Elim-
ination rules, on the other hand, allow us to carry out the analysis
of a defined notion1, by dissecting the content of that notion
according to the definition. If we now suppose that some object x
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falls under the defined concept a, we have no information about it
other than our assumption of its property a, so that any piece of
reasoning deriving from our assumption can only deal with a ficti-
tious x. Consequently, the elimination rule(s) derived from our
definition must be formulated in such a way as to allow for fictitious
objects and simulated constructions in inferences. Thus we see that
the asymmetry applies not only to the rules derived from the clauses
of the BHK interpretation, but also to the inference rules derived
from definitions in general, as long as they are understood in a
constructive way.

(2) As a consequence, the programme initiated by Gentzen cannot
be maintained in its original form. The asymmetry of inference rules
ultimately depends on the gap between semantic definitions and their
translation for the purposes of deduction, and it does not imply that
some rules are more basic than others. More generally, Gentzen’s
approach to proof theory requires a deep revision. Under the influ-
ence of Hilbert’s formalism, Gentzen analysed proofs as syntactic
objects in a formal system whose properties can be laid bare by means
of the techniques of cut elimination. This was a great achievement,
with far-reaching consequences both for our understanding of the
formal structure of proofs and for the study of mathematical theories.
Nevertheless, this approach causes a fundamental distortion of real
proofs, which are based on large unitary steps called lemmas and
conceptual constructions called definitions. Standard proof theory
does not have much to say about them, for it systematically gets rid
of lemmas by cut elimination and ignores the role of definitions in
mathematical reasoning because of the eliminability of explicit defi-
nitions. Therefore I claim that although proofs can be dealt with in a
purely syntactic way, there is strong evidence to the effect that that is
by no means the most appropriate way to deal with them. Instead,
proofs are best thought of as a true semantic phenomenon. The idea
of proof-theoretic semantics, as a theory of truth and logical conse-
quence that is based on the notion of proof, is but a starting point
towards the construction of a real semantic (i.e., conceptual, non-
formalistic) theory of proofs.

NOTE

1 This is of course different from the analysis of a concept aimed at carving out its
definition.
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LARS HALLNÄS

ON THE PROOF-THEORETIC FOUNDATION OF GENERAL

DEFINITION THEORY

ABSTRACT. A general definition theory should serve as a foundation for the
mathematical study of definitional structures. The central notion of such a theory is a
precise explication of the intuitively given notion of a definitional structure. The

purpose of this paper is to discuss the proof theory of partial inductive definitions as
a foundation for this kind of a more general definition theory. Among the examples
discussed is a suggestion for a more abstract definition of lambda-terms (derivations
in natural deduction) that could provide a basis for a more systematic definitional

approach to general proof theory.

1. INTRODUCTION

A general definition theory should serve as a foundation for the
precise mathematical study of definitional structures (cf. General
Pattern Theory (Grenander 1994)). The central notion in such a the-
ory is a precise explication of the intuitively given notion of a defi-
nitional structure. Definitional structures occur in all theory building
and in all formalization. Induction principles show that global defi-
nitional structures have an intrinsic methodological value. Defini-
tional structures can also be interesting in their own right as well as
being a tool for the intensional classification of mathematical objects.

The purpose of this paper is to discuss a more general perspective
of earlier work on a proof-theoretic foundation for partial inductive
definitions (Hallnäs 1991; Schroeder-Heister 1993). A first formula-
tion was given in terms of a sequent calculus for a sort of infinitary
propositional language (Hallnäs 1991). Originally, I considered this
calculus to be rather provisional in search of a more general and
elementary semantical formulation. It now seems to me that this
search for a general semantical formulation just led astray. I think
that the initial proof-theoretic formulation is already essentially an
elementary one that serves its purpose as a foundation for a general
definition theory well.

Synthese (2006) 148: 589–602 � Springer 2006

DOI 10.1007/s11229-004-6291-6



By a definitional structure we mean the local logic of a definition,
i.e., a notion of consequence, or, more generally, of connections, that
depends only on local information. Information is local if it only
refers to the meaning of defining conditions and to the way atomic
components are defined in a given definition D, i.e., without any
considerations concerning assumptions about global closure-proper-
ties of the definition. This also means that defining conditions will be
given an interpretation that is local to a definition.

The intended reading of defining conditions implicitly rests on
certain general closure properties, i.e., a global logic invariant
across different definitions. Consider the following definition which
gives a simple canonical example of the puzzles and paradoxes
hidden here:

D P ¼ P! Qf :

Assume P, then by definition P! Q and therefore Q (with a rea-
sonable interpretation of !, which includes modus ponens). Thus Q
follows from P. So P! Q (again by a reasonable interpretation of
!, which includes conditionalization). By definition, this gives P. So
we have derived both P and P! Q using only local information
about P and about P! Q with respect to D. If we now continued to
use the intended reading of ! as ‘‘if . . . then’’, we would obtain Q.
But this is paradoxical. Q is not defined in D, which means that it is
not possible to infer Q on the basis of local information alone. The
closure property needed to infer Q can be written as

‘D P and ‘D P! Q imply ‘D Q;

where ‘D means derivability with respect to D. This cannot hold,
since it would contradict the basic general closure property of a
definitional structure, i.e., the basic definitional structure axiom:

An atom a holds with respect to a definition D iff some condition A
defining a in D holds with respect to D.

So the interpretation of! with respect to D differs from the intended
global reading. What the example shows is that we can not assume
that defining conditions in a definition always can be given a global
extensional interpretation. The local logic of a definition will conform
to the intended – global and extensional – reading of defining con-
ditions only if certain non-elementary closure properties of the defi-
nition are satisfied – the kind of properties that are closely connected
with basic assumptions or foundational axioms.
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A definition is an intensional object. It is the result of an act where
we intend to define something. Even if the resulting definition does
not satisfy the intended properties, it is still there generating a defi-
nitional structure of some sort. This is the basic reason why an
explication of the structure has to be local in nature. Implication is
not an absolute notion in the present context, it might have a
meaning locally with respect to a definition which is different from the
intended global reading. Now the main question for the foundation
of a general definition theory is how all this should be made math-
ematically precise.

A definition is something where we have a definiendum–definiens
relation

a ¼def A

– from the context it is clear that this is a definition, so we can skip
the ‘‘def’’ notation – aesthetics is important – and write

a ¼ A:

It is difficult to say something in general about the fine structure of A.
The notion of a definitional structure we have in mind is based on
two basic general structural properties of A:

(i) A may directly depend on the definition of atoms a1 . . . an . . .
which gives structural components of A.

(ii) The act of defining introduces a duality between right – definiens
– and left – definiendum – which gives a possible duality structure
of A, expressed by some sort of implication.

In the definition

TrueðA! BÞ ¼ if TrueA; then TrueB

there are not only the components TrueA and TrueB but also a
duality between them: left(TrueA) and right(TrueB), i.e., a duality
between assuming and proving. To establish TrueðA! BÞ we have by
definition to prove TrueB under the assumption TrueA.

So definitions introduce a definiens DðaÞ for an atom a, compo-
nents DðAÞ for a defining condition A and a duality between left and
right. The first issue – DðAÞ – is a simple combinatorial property, so
foundational matters are mostly connected with an interpretation of
the duality between left and right that a definition introduces. It is
this aspect of a definitional structure that we try to study here. It is
only natural to give a logical interpretation of this structure, as
duality is a logical notion after all.
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The duality between left and right is intuitively a duality be-
tween two dual acts, the act of replacing a definiens with a cor-
responding definiendum–a local and deterministic act – and the act
of replacing a definiendum with its definiens – a global and possible
indeterministic act. The duality left–right that a definition intro-
duces is given by two basic aspects of a definition D. Given an
atom a; we may open D with a (left) or we may close D with a
(right). In the first case, we approach D with a and in the second
case we leave D with a. This duality can be interpreted in many
different ways; as a duality between assumptions and conclusions,
between generating and evaluating, between reflection and closure,
between initiate and finish etc. It is a basic structure of an inten-
sional topology; false–true, closed–open, sets–individuals, global–
local etc. If we open D with a we start with a and ask for its
definition in D, if we close D with a we end up with a using a
single definitional clause in D.

So the basic properties of a definitional structure considered here
are the following:

(i) connections generated by a given definition – a definition D as a
combinatorial object,

(ii) a specific duality generated by a given definition – a D-closed
duality notion ‘.

A main point here is that if we want to study definitional structures
with respect to this duality – B follows from A – then a simple sequent
calculus for an infinitary language seems to give an adequate foun-
dation. The proof-theoretic foundation is furthermore elementary
and natural with respect to these structural properties. The notion of
local information establishing that B follows from A with respect to
some definition D is closely related to the sub-formula property of a
cut-free sequent calculus. The finiteness property given by the fact
that the basic proof-theoretic concepts are introduced by inductive
definitions gives furthermore a natural foundation of a definition
theory. There is no reason to think that a more extensional model-
theoretic interpretation giving a more elementary foundation is
lurking in the background waiting for discovery. The notion of a
local logic is in a certain sense an elementary one, so it is perhaps not
too wrong to compare the situation we have here with recursion
theory where the notion of a partial recursive function gives a good
elementary foundation.
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So we will think of a definitional structure on U as given by

(i) a definition D over U,
(ii) a D-closed duality notion ‘.

2. DEFINITIONS

By a definition D as a mathematical object we mean a set of
equations

a ¼ A

where a 2 U for some given universe of discourse and where A is a
condition built up from objects in U, > and ? using (possibly infi-
nitary) conjunctions

V
I and implications!. We let DðaÞ be the set of

conditions defining a in D if there are any and f?g otherwise. We
interpret a definition D in terms of a local notion of consequence ‘D
given as follows

C; a ‘D a

C ‘D > C;? ‘D C

C ‘D Ai ði 2 IÞ
C ‘D

V
I Ai

C;Ai ‘D C

C;
V

I Ai ‘D C
ði 2 IÞ

C;A ‘D B

C ‘D A! B

C ‘D A C;B ‘ C

C;A! B ‘D C

C ‘D A

C ‘D a
ðA 2 DðaÞÞ C;A ‘D C ðA 2 DðaÞÞ

C; a ‘D C

We let DefðDÞ ¼ fa j ‘D ag. Let CovðDÞ ¼ fA j ‘D Ag – intuitively
CovðDÞ is the set of conditions that covers the set of true objects and
true – i.e., intended – connections.

A definition D is said to be total if the cut rule is derivable, i.e., if

C ‘ A C;A ‘ B

C ‘ B

holds for all C;A;B. Let � be the reflexive and transitive closure of
<�, where <� is given by

A <� a if A 2 DðaÞ
Ai <

� V
I Ai:
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D gives the elementary combinatorial structure of a definition and ‘
interprets this structure as a definition. Such a notion of a definitional
structure has a clear topological flavor.

Now it is not immediately clear in every case that the cover of
D, CovðDÞ, directly gives the intended duality interpretation of
D. Rather, the basic assumption is that it covers it. As a typical
example take the following recursive definition of plus.

ðnþ 0Þ ¼ n

ðnþ sðmÞÞ ¼ sðnþmÞ
sðnþmÞ ¼

V
NðððnþmÞ ! kÞ ! sðkÞÞ:

Due to an elementary logical reading of ‘, which includes the con-
traction rule, it turns out that CovðDÞ is not the correct evaluation
relation. Using contraction we can show ð2þ 2Þ ‘ m for all m � 4.1

The correct definition is given by: ðnþmÞ is the smallest k such that
ðnþmÞ ‘ k.

To look for a definitional structure on a set U is to look for a
definitional structure ðD;‘Þ where someM � U is included in CovðDÞ
and elementarily definable in ‘. What exactly elementarily should
mean will depend on the context.

The basic idea here is that we introduce a certain duality on U
with respect to a definition, i.e., a logic that gives an intensional
presentation of some M � U. It is a structural classification of M
in intensional terms – local proof theory with a flavor of concrete
topology, i.e., a theory about the form of definitional presenta-
tions.

The interpretation we give of the notion of duality in the present
context is then the following:

A duality structure on a set X is a triple ðD;R;LÞ where
D : X! PðXÞ

R;L : PðXÞ ! PðXÞ

ð9A 2 DðaÞ : A 2 CRÞ ) a 2 CR

ð8A 2 DðaÞ : A 2 LCÞ ) a 2 LC:

Given a definition D, this is then interpreted as follows

CR � the open cover of C � fA j C ‘D Ag

LC � the closed cover of C � fA j A ‘D Cg:
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Intuitively, we think of a definition D as generating connections on a
set and that our reading of these connections as definitional ones will
introduce a duality on this connection structure. The duality between
open and closed covers is simply the duality between 9 and 8; ? ‘ a,
a ‘ > etc.

3. SOME CHALLENGES

3.1. Induction Principles – Closure Properties: The Functional Closure

Given a set X � U and functions f1 . . . fn with arities k1 . . . kn over U,
the function closure with respect to ðX; f1 . . . fnÞ is the set obtained by
starting with X and closing it under the given functions, i.e., the set
given by the definition DðX; f1 . . . fnÞ

a ¼ > ða 2 XÞ
fiðx1 . . . xkiÞ ¼ ðx1 . . .xkiÞ ði � nÞ:

It is then easy to see that DefðDðX; f1 . . . fnÞÞ is the smallest set con-
taining X and being closed under the functions f1 . . . fn.

Similarly, given a set X � U, functions f1 . . . fn with arities k1 . . . kn
over U, a functional F : ½U! U� ! U and a set U � ½U! U�, the
functional closure with respect to ðf1 . . . fn;F;U;XÞ is given by the
following definition DðX; f1 . . . fn;F;UÞ (DF for short in what follows)

a ¼ > ða 2 XÞ
fiðx1 . . . xkiÞ ¼ ðx1 . . .xkiÞ ði � nÞ
FðfÞ ¼

V
Uðx! fðxÞÞ ðf 2 UÞ:

The functional closure is a generic structure for studying higher order
induction principles and foundational axioms. Induction principles
are the traditional way in which we use definitional structures and
make them explicit. These principles represent various foundational
axioms. The challenge here is to use the functional closure as a
guiding structure in the search for new axioms and new formulations
of old ones. Take the notion of a closed term in the k-calculus (which
corresponds to the notion of a closed derivation in natural deduction)
as an example. If we view this notion as given by a functional closure
– the rule for k-abstraction being the functional – we get a more
abstract presentation of syntactical notions. What does this mean in
terms of induction principles, axioms for syntactic structures etc.?
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3.1.1. Abstract Derivations and Terms
Using the notion of a functional closure, we may model derivations in
natural deduction in a more abstract manner. Thus, rules like ^-
introduction and !-elimination are function rules, while typically
rules like !-introduction are functional rules. This means that the
premise of the !-I rule is a function, i.e., an abstract object. So the
notion of a bound variable will disappear. The problem of modelling
rules involving discharging of assumptions in a concrete manner will
here correspond to finding the right principles for characterizing the
functional in question and the set of concrete functions. Such prin-
ciples will have to ensure that there is a sufficient number of such
functions, but also that there are not too many. The functionals must
also be given the correct type of restrictions. Following the Curry–
Howard isomorphism between derivations and k-terms we can con-
centrate on terms, which makes notation easier, without losing basic
structural information.

Let U be a set having enough closure properties for building our
terms. Let X � U be a set of variables, Ap a binary function on U, k a
functional in ½U! U� ! U and U a subset of ½U! U�. The k-terms
are now given by the functional closure with respect to ðX;Ap; k;UÞ –
DkX for short. Then a term t is closed if f 2 DefðDk;Þ and open if
t 2 DefðDkXÞ implies that X is non empty. We write Dk for short if
X ¼ ;.

We may then consider the following principles:

(i) Assume that q is a finite partial function from X to DefðDkXÞ.
Then one natural axiom here is to state that the following defi-
nition makes sense

xq ¼ q½x�
Apðt; rÞq ¼ Apðtq; rqÞ
kðgÞq ¼ kðgqÞ

where q½x� ¼ qðxÞ if q is defined for x otherwise q½x� ¼ x and
where gqðtÞ ¼ gðxÞqþ fx ¼ tg for some given new x 2 X, i.e.,
some x for which q is not defined.

(ii) We also want to have some principle of combinatory completeness
at our disposal. Given a term t 2 DefðDkXÞ we have a function
Kx:tðrÞ ¼ tfx ¼ rg. Now we want Kx:t to be in U for all terms t.

Principle (i) gives restrictions on the definition DkX by stating that a
certain principle of recursion on the given definition is valid, i.e., the
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definition is deterministic, there are not too many functions in U etc.
It also states that a certain completeness property holds:

If kðgÞ 2 DefðDkXÞ; then gq 2 U:

Principle (ii) states that there are enough functions in U.

3.1.2. Induction on a Term (Derivation)
Let us assume that a property is given by a definition D0. We have the
following principle of induction on the functional closure DF in
general – what amounts to induction plus co-induction.

If for all a 2 U

(i) A 2 DFðaÞ implies A ‘D0 a
(ii) and there is a A 2 DFðaÞ such that a ‘D0 A
then DefðDFÞ � DefðD0Þ.

For the particular functional closure Dk it is natural to think of a
much stronger principle of induction:

If E is a set such that

(i) E is closed under Ap
(ii) and kðfÞ 2 E if E is closed under f for f 2 U

then E � DefðDkÞ.

3.1.3. Local Definability and the Notions of Redex and Cut
Given a definition D we say that a function f : U! U is locally
definable in D, if for all x 2 U

x ‘D fðxÞ:
The idea is simply that we always can reach fðxÞ from x by reasoning
in D. That is to say D contains sufficient information to compute fðxÞ
given x, i.e., the value of f at x is local to D. We may also think of D
as introducing a certain structure on a given set. That a function is
locally definable in D then means that fðxÞ can be described in terms
of the structural operators of D as a formal D expression. f is then
pointwise an elementary operation with respect to D.

If t is a closed term (t 2 DefðDk)), then

kðgÞ � t

for some g, hence either t is kðgÞ or ApðkðgÞ; rÞ � t for some r. So kðgÞ
is a normal form in the sense that kðgÞ is a �-minimal form of a closed
term.
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We may compare a concrete version of the b-rule cb

Apðkx:t; rÞ ) tðr=xÞ

and an abstract version ab

ApðkðgÞ; rÞ ) gðrÞ:
The cb rule is not locally definable with respect to the definition of
terms. This means that not all rules of contraction are locally defin-
able with respect to the definition of derivations. The reason for this
is that when we substitute a term in the scope of a variable binding
operation like k-abstraction, we sometimes have to change the name
of the bound variable by introducing a fresh variable. This makes
substitution a non-local operation with respect to the definition of
terms. It is a direct consequence of the, in a certain respect, too
concrete presentation of the basic ideas involved in the rules of k-
abstraction and !-introduction. On the other hand, the ab rule is
locally definable with respect to DkX, which means that all rules of
contraction for the abstract derivations are locally definable with
respect to the functional closure definition of derivations. This is one
way of expressing that the basic definition of derivations is given on
the right level of abstraction, namely that the basic structural oper-
ations of contractions all are locally definable with respect to the
definition of derivations.

3.1.4. Normalization
Assume that the following definition on DefðDk;Þ makes sense;

ConðApðkðfÞ; tÞÞ ¼ fðtÞ
ConðApðApðr; uÞ; tÞÞ ¼ ApðConðApðr; uÞ; tÞ:

Tait’s (1967) notion of convertibility for closed terms may then be
given by the following modification of Dk;

Apðr; tÞ ¼ ConðApðr; tÞÞ
kðfÞ ¼

V
Uðt! fðtÞÞ:

Let us denote this transformation of Dk; by Tk;. Now, normaliza-
tion follows if certain basic logical and structural properties of Dk;
are invariant under this transformation.
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3.2. Definitional Structures per se: Introducing a Proof Theoretic
Perspective

Using a proof-theoretic foundation of a general definition theory
means that we introduce a proof-theoretic perspective concerning
central concepts and basic methods. The basic challenge here is to
develop this approach through extensive studies of examples, looking
for definitional structures in several areas of mathematics. The dis-
tinction between definability theory and definition theory here is
similar to the distinction between reductive proof theory and general
proof theory (see Prawitz 1971) or between computability theory and
a structure theory of computations.

Example. Solving an equation Eðx1 . . .xnÞ ¼ k can structurally be
viewed as looking for a definition D such that

Eðx1 . . .xnÞ ‘D k:

That is, we introduce definitional structures not only in terms of
assigning values to variables, but also with respect to methods for
finding solutions.

3.3. Intensional Classification of Mathematical Objects: Classification
with respect to Presentational Structure

A general definition theory is concerned with principles of intension-
ality, i.e., with presentational structures. So a very basic challenge is the
classification of mathematical objects with respect to various presen-
tational structures. Given the extensional notion of an object, we look
for different concrete presentations of it. In definition theory we study
the structure of the definitions of objects. An example of this is Fred-
holm’s use of a definitional approach to study the intensional classifi-
cation of primitive recursive functions (Fredholm 1995). The general
recursive definition of themin function is structurally symmetrical, i.e.,
the definition of minðn;mÞ has the same form as the definition of
minðm; nÞ for all pairs ðn;mÞ. In contrast, there are no symmetrical
primitive recursive presentations of themin function. This is oneway of
reading the results obtained by Colson (1991) and Fredholm (1995).

At this point it is natural to try to develop definition theory as a
concrete topology of presentational structures. Several basic notions
of topology have a natural definitional interpretation. A definition
introduces connections on a space – where a ¼ ðb! cÞ can be thought
of as a second order connection etc. So, naturally, a space X is
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connected with respect to D if a ‘ b for all a; b 2 X – a distinction
between right connected and left connected may of course be
introduced.

3.4. The Structure of Proofs: to Classify Propositions with Respect
to Definitional Structures Inherent in their Proofs

General proof theory (Prawitz 1971, 1973a, b) is concerned with the
structure of proofs. Studying the structure of proofs of given propo-
sitions could be viewed as a sort of intensional inverse mathematics. A
canonical example is the connection between consistency and the
normalization of proofs in natural deduction systems. Ekman (1994)
studied the possible structure of proofs of Cantor’s theorem in natural
deduction systems of set theory. His investigations led, among other
things, to insights concerning the impredicative nature of proofs of
certain simple propositions in intuitionistic propositional logic. Here
is a twofold challenge in pursuing Ekman’s investigations towards of
more complex set theoretic propositions such as the axiom of choice
and the continuum hypothesis, and to introduce more explicit defi-
nition theoretic notions. It is clearly possible to formulate several of
Ekman’s notions in terms of definitional structures of proofs.

Ekman shows that all proofs of :ðp$ :pÞ in intuitionistic
propositional logic reduce to a proof containing the following
structure: a derivation step

:p :p! p

p

is immediately followed by the derivation step
p p! :p
:p

Let us say that a definition D is assigned to the derivation step

A B

C

if ‘D B and A ‘D C. In the present case, the definition

D ¼ p ¼ p! ?f
can be assigned to both derivation steps in Ekman’s example. It can
be seen that for any such assignment (provided there is at least some
atom which is not defined), D cannot be a total definition. So we have
a kind of intensional characteristics of the proof theoretic structure
needed to prove :ðp$ :pÞ. The idea here is simply that the pairs
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ðD;:p ‘D pÞ, ðD; p ‘D :pÞ describe a definitional structure that is
intrinsic to the original proof. This structure is then, of course,
strongly connected with the structure of Russell’s paradox etc. and
the proof structure we need to prove Cantor’s theorem.

4. CONCLUDING REMARKS

A definitional structure is a presentation of some notion of a defi-
nition over a given structure. We use the local logic ‘ with respect to
a definition D to study and characterize logical properties of this
presentation. The type of properties we think of are then typically
invariant with respect to the structure of presentations. It is not
completely obvious how to make this concept of invariance precise.
One suggestion is to use a mapping

i : U1 ! U2

preserving the basic definitional and logical structure, i.e.,

ið>Þ ¼ >; ið?Þ ¼ ?

iðA! BÞ ¼ iðAÞ ! iðBÞ etc.

i½D1ðaÞ� ¼ D2ðiðaÞÞ
to define definitional isomorphism. But it is not clear whether this
‘‘structural’’ solution is too simple minded. Perhaps a more ‘‘logical’’
equivalence is a better candidate for the given intuitive notion of
definitional invariance. In any case, it is a very appealing idea to
capture definitional properties in terms of invariance with respect to
some ‘‘natural’’ notion of equivalence.
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NOTE

1 This is spelled out in detail in Hallnäs (1991), p. 132.
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WILLIAM W. TAIT

PROOF-THEORETIC SEMANTICS FOR

CLASSICAL MATHEMATICS

ABSTRACT. We discuss the semantical categories of base and object implicit in the
Curry-Howard theory of types and we derive derive logic and, in particular, the

comprehension principle in the classical version of the theory. Two results that apply
to both the classical and the constructive theory are discussed. First, compositional
semantics for the theory does not demand ‘incomplete objects’ in the sense of Frege:
bound variables are in principle eliminable. Secondly, the relation of extensional

equality for each type is definable in the Curry-Howard theory.

The picture of mathematics as being about constructing objects of
various sorts and proving the constructed objects equal or unequal is
an attractive one, going back at least to Euclid. On this picture, what
counts as a mathematical object is specified once and for all by
effective rules of construction.

In the last century, this picture arose in a richer form with
Brouwer’s intuitionism. In his hands (for example, in his proof of the
Bar Theorem), proofs themselves became constructed mathematical
objects, the objects of mathematical study, and with Heyting’s (1959)
development of intuitionistic logic, this conception of proof became
quite explicit. Today it finds its most elegant expression in the Curry–
Howard theory of types, in which a proposition may be regarded, at
least in principle, as simply a type of object, namely the type of its
proofs. When we speak of ‘proof-theoretic semantics’ for mathe-
matics, it is of course this point of view that we have in mind.

On this view, objects are given or constructed as objects of a given
type. That an object is of this or that type is thus not a matter for
discovery or proof. One consequence of this view is that equality of
types must be a decidable relation. For, if an object is constructed as
an object of type A and A and B are equal, then the object is of type
B, too, and this must be determinable.

One pleasant feature of the type theoretic point of view is that the
laws of logic are no longer ‘empty’: The laws governing the type

8x :A:FðxÞ ¼ Px:AFðxÞ
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simply express our general notion of a function, and the laws gov-
erning

9x :A:FðxÞ ¼ Rx:AFðxÞ
express our notion of an ordered pair.

Much of my discussion applies equally to constructive mathe-
matics. But the type-theoretic point of view remains, for many peo-
ple, restricted to the domain of constructive mathematics. The term
‘classical’ is included in the title to indicate that, on the contrary,
classical mathematics can also be understood in this way and does
not need to be founded on an inchoate picture of truth-functional
semantics in the big-model-in-the-sky, a picture that can in any case
never be coherently realized.

Of course, no particular system of types is going to capture all of
classical – or for that matter, constructive – mathematics. In the
classical case, the open-endedness can be expressed by the possibility
of introducing ever larger systems of transfinite numbers as types. But
here I will discuss only the elementary theory of types, omitting even
the introduction of the finite numbers.

One thing to be noticed, and this is independent of whether or not
one admits classical reasoning, is that Frege’s simple ontology of
function and object must be abandoned. In particular, his notion of a
concept, as a truth-valued function, won’t do: it must be replaced by
the notion of a propositional or type-valued function. This is obvious
in the case of constructive mathematics; but it applies equally to the
classical case. What we prove are propositions, not truth-values:
propositions may be said to have truth-values; but that is in virtue of
being provable or refutable. Moreover, our concepts, i.e., proposi-
tion- or type-valued functionals, range not over the ‘universe of all
objects’, as for Frege, but over specific types.

1.

Another element of Frege’s picture that I want to at least avoid is his
notion of an ‘incomplete object’: the notion of a function as what is
denoted by an open term and the notion of a propositional function
as what is expressed by an open sentence. This very ugly idea has
raised its head again in recent times because of the apparent need for
bound variables in formulas such as

Qx :A:FðxÞ
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where Q is a quantifier, and in terms

kx :A:tðxÞ

expressing universal quantifier introduction. (x :A expresses the
restriction of x to objects of type A.)

However useful in practice, variables are dispensible in the com-
positional semantics of type theory. Providing that we can always
bring the formula FðvÞ into the form F 0, where F 0 contains only
variables in F other than v and denotes a propositional function
defined on A, and similarly we can always bring tðvÞ into the form t0v,
where t0 contains only variables in t other than v and denotes a
function defined on A, then we may eliminate bound variables as
primitive notation and write

Qx : A:FðxÞ :¼ QF 0 kx : A:tðxÞ :¼ t0:

That we can eliminate bound variables in this way I proved in Tait
(1998b), building on the work of Schönfinkel in (l924). Let me de-
scribe the ontology upon which the elimination is founded.

More generally, consider a sentence of the form

Q1x1 : A1 Q2x2 : A2ðx1Þ � � �
Qnxn : Anðx1; . . . ; xn�1:Fðx1; . . . ; xnÞ

where the Qk are quantifiers. Iterating the above procedure, we ob-
tain

Q1x1 : A01 Q2x2 : A02x1 � � �Qnxn : A0nx1 � � �xn�1:A0x1 � � � xn
¼ Q1 � � �QnA

0

where

A0kx1 � � � xk�1 ¼ Akðx1; . . . ;xk�1Þ
F 0x1 � � �xn ¼ Fðx1; . . . ; xnÞ:

The sequence

A01; . . . ;A0n;F
0

is a type-base in the sense of the following.

DEFINITION. The notion of a type-base or simply a base and of an
argument for a base is defined by induction.

• The null sequence is a base and its only argument is the null se-
quence of objects.
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• For n � 0, the sequence

F0; . . . ;Fn

is a base iff F0; . . . ;Fn�1 is a base and Fn is a type-valued function
defined on the arguments of F0; . . . ;Fn�1. An argument for this
base is a sequence b0; . . . ; bn such that b ¼ b0; . . . ; bn�1 is an argu-
ment for F0; . . . ;Fn�1 and bn is of type Fnb. In particular, the unit
sequence consisting of a type A is a base. Its arguments are the unit
sequences consisting of objects of type A.

Thus, every initial segment F0; . . . ;Fk (k < n) of a base B ¼ F0; . . . ;Fn

is a base. If b0; . . . ; bn is an argument for B, then Fkb0 � � � bk�1 is a
type. We will call the terms in a base functionals. When B;F is a base,
we call B the base of the functional F. When B is a base and b is an
argument for it, we write

b : B:

As a special case, when B is a type

b : B

means that b is an object of type B.

2.

We assume given an initial stock of functionals, closed under bases,
and, for each included type, all the objects of that type. We now
extend this stock by means of base-forming operations. In x3, we
extend the class of objects by means of object-forming operations

INSTANTIATION. We may, à la Schönfinkel, regard a functional of
nþ 1 variables as a function of the first variable, whose values are
functions of the remaining variables:

Fb0b1 � � � bn ¼ ðFb0Þb1 � � � bn:

Thus, when B ¼ A;F0; . . . ;Fn is a base and b :A, then

Bb ¼ F0b; . . . ;Fnb

defines a base whose arguments are those sequences b0; . . . ; bn such
that b; b0; . . . ; bn is an argument for A;F0; . . . ;Fn. Bb is called an
instantiation of B.

We assume, too, that when B is in the initial stock of bases, then so
is its instantiations.
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QUANTIFICATION. When F has base A, 8F and 9F are types.

We may extend quantification QF, defined initially for a functional
whose base is a type, to arbitrary functionals with non-null bases as
follows: when F has base B;G, then QF has base B. If b is an argu-
ment for B, then ðQFÞb is defined point-wise by

ðQFÞb ¼ QðF bÞ:
If the base of the functional F is of length n, then we define its
universal closure to be

F� :¼ 8 � � � 8F
with n occurrences of 8. So F� is a type.

If b0; . . . ; bn is an argument for the base F0; . . . ;Fn, then the type
Fkb0 � � � bk�1 of bk depends upon b0; . . . ; bk�1. But sometimes we may
wish to consider propositional functions F of n arguments of inde-
pendent types D1; . . . ;Dn, respectively. For example, in first or higher
order predicate logic, we have variables ranging over the type of
individuals, the type of sets of individuals, the type of sets of these,
and so on. To deal with this, we need the following operation:

DUMMY ARGUMENTS. If A is a type and F0; . . . ;Fn is a base, the
base A;F0½A�; . . . ;Fn½A� is defined by

Fk½A�a ¼ Fk:

We extend this operation point-wise: If B;G and B;H0; . . . ;Hn are
bases, then so is

B;G;H0½G�; . . . ;Hn½G�
where, for each argument b for B

Hk½G�b :¼ Hkb½Gb�:
Now, given the list D1; . . . ;Dn of types, we may form the base
D1; . . . ;Dn where D1 ¼ D1 and

Dkþ1 ¼ Dkþ1½D1�½D2� � � � ½Dk�:
Then, if b ¼ b1; . . . ; bn is an argument for this base, then

Dkb1 � � � bk�1 ¼ Dk:

Hence b is an argument for the base iff bk :Dk for each k ¼ 1; . . . ; n.1

In terms of the quantifiers and dummy arguments, we can define
implication and conjunction: Let F and G have base B. then

F �! G :¼ 8G½F� F ^ G :¼ 9G½F�:
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Then F �! G and F ^ G have base B. Note that, if b :B, then

ðF �! GÞb ¼ ðF b �! GbÞ ðF ^ GÞb ¼ ðF b ^ GbÞ:
Coimplication is defined between functionals with the same base by

F !G :¼ ðF �! GÞ ^ ðG �! FÞ:
There is one more operation on bases that we need, besides

quantification, instantiation and introducing dummy arguments:

TRANSPOSITION. Let

F;G;H0; . . . ;Hn

be a base. 8G is a type and F½8G� has base 8G; so 8G;F½8G� is a base.
If c; d is an argument for this base, then c :8ðGÞ and d :F½8G�c ¼ F. So
cd is defined and is of type Gd. Thus d; cd is an argument for F;G. It
follows that we can form a new base

8G;F½8G�;H0fGg; . . . ;HnfGg
where the functionals HkfGg are defined by

HkfGgcd :¼ HkdðcdÞ:
Again, we may extend the operation point-wise: Let

B;F;G;H0; . . . ; Hn be a base. Then the base
B; 8G;F½8G�;H0fGg; . . . ;HnfGg is defined by

HkfGgb ¼ HkbfGbg:

3.

We turn now to object-forming operations.
The LAW OF 8-ELIMINATION is

f : 8F & b : A ) fb : Fb:

The LAW OF 9-INTRODUCTION is

b : A & c : Fb ) ðb; cÞ : 9F
and the LAW OF 9-ELIMINATION takes the form of projections:

p : 9F ) p1 : A & p2 : Fðp1Þ:
Note that 1 and 2 do not count here as objects.2

In order to obtain the law of 8-Introduction without using
lambda-abstraction, we need to introduce a generalization of
Schönfinkel’s combinators.
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COMBINATOR K. If A and B are types, then

KðA;BÞ :A �! ðB �! AÞ
where

KðA;BÞab ¼ a:

This is the typed version of one of Schönfinkel’s combinators.
We extend K to functionals F and G with a common base B: if b :B,

then

KðF;GÞ :ðF �! ðG �! FÞÞ�

is defined point-wise by setting

KðF;GÞb ¼ KðFb;GbÞ:

COMBINATORS S8 and S9. Let H have base F;G and let Q be a
quantifier 8 or 9. Then 8QH and Q8ðHfGgÞ both are types. We will
define the combinator

SQðHÞ :ð8QH �! Q8ðHfGgÞ:
Let c :8QðHÞ. Then

SQðHÞc :Q8ðHfGgÞ:
HfGg has base 8G;F½8G�.

First, let Q ¼ 8.
S8ðHÞc :88ðHfGgÞ:

Let d :8G and e :F ¼ F½8G�c. S8ðHÞcde must be defined to be of type
HfGgde, i.e., of type HeðdeÞ, which is the type of ceðdeÞ. Hence, we
define

S8ðHÞcde ¼ ceðdeÞ:
Thus, S8 is the typed version of Schönfinkel’s other combinator.

Now let Q ¼ 9.
S9ðHÞc :98ðHfGgÞ:

Thus we must have

S9ðHÞc1 :8G

S9ðHÞc2 :8HfGgðS9ðHÞc1Þ:
Let d :F. Then we must have

S9ðHÞc1d :Gd

S9ðHÞc2d :HdðS9ðHÞc1dÞ:
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But cd :9Hd and so cd1 :Gd and cd2 :Hdðcd1Þ. So we may define
S9ðHÞ by

S9ðHÞc1d :¼ cd1 S9ðHÞc2d :¼ cd2:

We again extend the combinators SQðHÞ to the case in which H
has a base B;F;G by point-wise definition:

SQðHÞ :ð8QH �! Q8HfGgÞ�:
Let b :B. Then

SQðHÞb :¼ SQðHbÞ:
Notice that, if H has base A;B½A�, the type

89H �! 98HfB½A�g
of S9ðHÞ, which may be expressed by

8x :A9y :B:Hxy �! 9z :ðA �! BÞ8x :A:HxðzxÞ
is an expression of the Axiom of Choice. Our definition of the
combinator S9ðHÞ amounts to a constructive proof of this axiom.

4.

We need now to discuss the notion of definitional equality. We are
discussing a system R of bases and objects built up by means of
certain operations: instantiation, quantification, introducing dummy
arguments, transposition, and 9 and 8 introduction and elimination
from a given stock of bases and objects, which are distinct from the
newly introduced ones. We assume that equality between given
functionals or objects is given and we assume that it is closed under
instantiation and 8-elimination. Thus, besides the defining equations
given above for the new functionals and objects, we have all of the
true equations

Fa ¼ G fa ¼ b

concerning given functionals F and G and given objects a and b (when
f is of some type 8H and A;F is a given base). We can extend the
equality relation to the new objects and types by taking it to be the
equivalence relation generated by the defining equations and the true
equations concerning the given objects and functionals. However, for
functionals in general, we need a weaker (i.e., more inclusive) notion
of equality, which we can define by induction on the length of their
bases: two functionals F and G are equal if their bases have the same
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length n and the members are pairwise equal and if
Fx1 � � � xn ¼ Gx1 � � �xn follows purely formally from the given equa-
tions, where x1; . . . ; xn are distinct symbols. We need to specify that,
when an object c is of some type A and A ¼ B, then c is of type B, too.

It can be shown that this definition of equality, called definitional
equality, is decidable relative to the true equations concerning the
given functionals and objects. It turns out, too, that when b ¼ c and
b :A, then c :A. So each object has a unique type. The inelegant
definition of equality between functionals with non-null bases is
necessitated by the fact that we need below some special cases of the
equations

H½G�fGg ¼ H½8G�
ðQHÞ½G� ¼ QðH½G�Þ

whenever Q is a quantifier and the left-hand sides are meaningful.
These equations are valid for the notion of equality we have just
introduced; but it would be more satisfactory to be able to extend this
list of equations to a ‘complete’ one, i.e., so that equality of objects or
functionals in general could be taken to be the equivalence relation
generated by all the equations. For example, besides the above
equations, we would need

ðQHÞfGg ¼ QðHGÞ
H½F�½G½F�� ¼ H½G�½F�
HfFgfGfFgg ¼ HfGgfFg
H½F�fG½F�g ¼ HfGg½F�

when, again, the left-hand sides make sense.

QUESTION. Is this system of equations complete? I suspect so; but if
not, how is it to be extended to a complete system?

5.

Let G and H have base B;F, so that H½G�fGg ¼ H½8G�. Let
S ¼ S8ðH½G�Þ. Then

S :ð88H½G� �! 88ðH½G�fGgÞÞ�:
Hence

S :ð8ðG �! HÞ �! 88ðH½8G�ÞÞ�:
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But 8ðH½8G�Þ ¼ ð8HÞ½8G� and so, finally

S :ð8ðG �! HÞ �! ð8G �! 8HÞÞ: ð1Þ
Note that the types of KðF;GÞ and S, i.e.

ðF �! 8F½G�Þ� and ð8ðG �! HÞ �! ð8G �! 8HÞÞ�

are precisely Quine’s (1951) axioms for the universal quantifier in
first-order predicate logic, which have the property of avoiding k-
abstraction, i.e. hypothetical proof. The difference is that Quine
retains bound variables in formulas. Both Quine (1960a) and Bernays
(1959) discussed the question of eliminating bound variables in for-
mulas in first-order logic; but neither presented an entirely adequate
account from the point of view of proof theory, even for predicate
logic.

If in the equation (1) we replace G and H by B½A� and C½A�,
respectively, where A;B;C are types, then we obtain Schönfinkel’s
combinator S of type

½A �! ðB �! CÞ� �! ½ðA �! BÞ �! ðA �! CÞ�:
This type, together with the type of K(A,B):

A �! ðB �! AÞ
are the axioms of positive implicational logic. This correspondence
between the positive implicational logic and the typed theory of
combinators seems to have been first noticed in Curry and Feys
(1958) and is cited in Howard (1980) as one of the sources of the
propositions-as-types point of view.

6.

So far, we’ve said nothing about eliminating bound variables, or what
amounts to the same thing, eliminating the need for free variables. In
order to show how we can eliminate variables, we first have to
introduce them. Let A be a type in R and let v be a symbol that we
take as an indeterminate of type A. We can construct the formal
‘polynomial extension’ R½v� of R in the obvious way, formally closing
it under the above operations and where equality is again the relation
of definitional equality. For every b :A in R, there is a homomorphism
b� : R½v� �! R obtained by ‘substituting b for v in the formulas and
terms of R½v�’. Restricted to R, b� is the identity function. The fol-
lowing is proved in Tait (1998b).
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EXPLICIT DEFINITION THEOREM. Let F1; . . . ;Fn be a base and
t a term of type B in R½v�.
– There is a base A;F01; . . . ;F0n in R such that

F0kv ¼ Fk ðk ¼ 1; . . . ; nÞ
– There is an object t0 :8B0 in R such that

t0v ¼ t:

We can write

kx :A:FðxÞ :¼ F0 kx :A:tðxÞ :¼ t0:

This process of taking formal extensions can be iterated: let
R½v0; . . . ; vn� be given and let Bnþ1 be a type in this system. Choose a
new symbol vnþ1 as an indeterminate of type B and form
R½v0; . . . ; vnþ1� ¼ R½v0; . . . ; vn�½vnþ1�.

Given a functional Fðv1; . . . ; vnÞ in the system R½v1; . . . ; vn�, we can
construct the functional

F0 ¼ kx1 :B1 � � � kxn :Bb:Fðx1; . . . ; xnÞ

in R such that

F0v1 � � � vn ¼ Fðv1; . . . ; vnÞ:

7.

Notice that we have not introduced disjunction in type theory: it is
indeed an awkward operation. Were we to introduce the type N of the
natural numbers with its corresponding introduction and elimination
rules, the functional ¼ 0 with base N can be defined and so dis-
junction can be defined by

A _ B :¼ 9x :N½ðx ¼ 0 �! AÞ ^ ðx 6¼ 0 �! BÞ�:
But the most elementary way to deal with disjunction is to
introduce the base

2;T

2 is the two-object type. 2-Introduction specifies that the truth-values
> and ? are of type 2. 2-Elimination asserts the existence, for any
functional F with base 2, of

N2ðFÞ : ½F> �! ðF? �! 8FÞ�
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where

N2ðFÞbc> :¼ b N2ðFÞbc? :¼ c:

We take T> to be the terminal type and T? to be the initial type,
i.e.,

1 :¼ T> 0 :¼ T?
1-Introduction specifies that i is an object of type 1 and 1-Elimination
asserts the existence, for any functional F of base 1, of

N1ðFÞ : ½Fi �! 8F�
where

N1ðFÞbi :¼ b:

There is no 0-Introduction, of course. 0-Elimination asserts the
existence, for any functional F of base 0, of

N0ðFÞ :8F:
Our types k are of course Martin-Löf’s (1998) types Nk.

In order to preserve the Explicit Definition Theorem, the elimi-
nation rules for k ¼ 2; 1 and 0 need to be extended in the usual way
by point-wise definition to functionals F with bases of the form

B; k½B�
where, if B is G0; . . . ;Gn, then k½B� :¼ k½G0�½G1� � � � ½Gn�. We may do
this as follows: Let Fþ with base k;B½k� be defined by

Fþ :¼ kx :kky1 :B1 � � � kyn :Bb:Fy1 � � � ynx
Then we define

N2ðFÞ : ½Fþ> �! ðFþ? �! 8FÞ��

N1ðFÞ : ½Fþi �! 8F��

N0ðFÞ :8F
by

NkðFÞb :¼ NkðFbÞ
for b :B.

If F has base B, then we define

:F :¼ F �! 0½B�:
Let F and G have the base B. Set

hF;Gi :¼ 9x :2:½ðTx �! AÞ ^ ð:Tx �! BÞ�:
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It is easy to deduce (i.e. find objects of type)

ðF !hF;Gi>Þ� ðG !hF;Gi?Þ�: ð2Þ
So we may define

F _ G :¼ 9x :2hF;Gix:
With this definition, using the deducibility of (2), the usual laws of _-
Introduction and -Elimination are derivable.

8.

Up to now, we have been discussing the theory of types in general,
with no particular reference to the classical theory. The latter is of
course obtained by adding the law of

::-ELIMINATION. Let F have base B. Then

DðFÞ :ð::F �! FÞ�:
Here again, when B is non-null, DðFÞ is defined point-wise in terms of
DðAÞ for A a type:

DðFÞb :¼ DðFbÞ
when b :B.

From the type-theoretic point of view, what characterizes classical
mathematics is not truth-functional semantics, but the introduction
of what, somewhat in the spirit of Hilbert, we may call the ideal
objects DðFÞ.

It is interesting that the problem that writers have found with
classical mathematics, that there exist undecidable propositions A,
such as the continuum hypothesis, for which the law of excluded
middle nevertheless is taken to be valid, takes a different form when
one moves from the (anyway incoherent) point of view of truth-
functional semantics to that of type theory. Even constructively we
can produce a deduction p of

::ðA _ :AÞ:
So classically we have

q ¼ DðA _ :AÞÞÞp :A _ :A:
i.e.,

q :9x :2:hA;:Aix:
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Therefore, q1 :2 and q2 :hA; :Aiðq1Þ. But we are unable to conclude
that q1 is > and we are unable to conclude that it is ?; and so we are
unable to conclude that q2 is a proof of A or that it is a proof of :A.
We will see below that, unlike the relation of definitional equality, we
can define in type theory the notion of (extensional) equality �.
Hence, by 2-Elimination (which states that anything true of both >
and ? is true of all objects of type 2)

q1 � > _ q1 � ?

will be derivable, since

> � > _ > � ?

and

? � > _ ? � ?

will both be derivable. Notice that this situation concerns not just
undecidable propositions in classical mathematics, but any proposi-
tion A for which excluded middle cannot be proved constructively.
Also, in the same way in which there are ideal objects of type 2 which
cannot be said to be > and cannot be said to be ?, but nevertheless
are either one or the other, so there are ideal numbers for example,
i.e., objects of type N (were we to introduce this type), which there-
fore are in the sequence 0; 1; 2 . . . but which we cannot locate in this
sequence. This is an interesting observation about how disjunction
works in classical mathematics; but it seems paradoxical only when
one assumes that classical mathematics is based on truth-functional
semantics.

9.

In classical logic, the sets of elements of type A are not themselves
types, but are precisely the 2-valued functions on A, i.e., they are the
objects of type

PðAÞ :¼ A �! 2:

We may define the functional �A with base A;PðAÞ½A� by
a�Af :¼ �Aaf :¼ TðfaÞ:

So when fa ¼ >, a�f is the true proposition 1 and when fa ¼ ?, it is
the false proposition 0.

WILLIAM W. TAIT616



We have shown how, in classical logic, for any functional F with
base A, to obtain an object

p : 8x :A½FðxÞ _ :FðxÞ�:
Let f ¼ kx :Aðpx1Þ and g ¼ kx :Aðpx2Þ. Then f :A �! 2 ¼ PðAÞ. Let
u :A. Then gu is a deduction of hFðuÞ;:FðuÞiðfuÞ ¼

½TðfuÞ �! FðuÞ� ^ ½:TðfuÞ �! :FðuÞ�:
From the second conjunct, in classical logic, we obtain a deduction of
FðuÞ �! TðfuÞ. Recalling that u�Af is TðfuÞ, we thus have a deduction
rðuÞ of

u�Af !FðuÞ:
So ðf; kx :A:rðxÞÞ is a deduction of the COMPREHENSION PRIN-
CIPLE3

9z :PðAÞ8x :A½x�z !FðxÞ�:

10.

In this final section, I will show that extensional equality can be
defined in the Curry–Howard theory.4 Recall that equality between
types is to be understood intensionally, as definitional equality. This is
important for the type-theoretic point of view: what the type of an
object is should be determined from the object.

If c is given as an object of type A and A is the same type as B, then
we should be able to determine that c is of type B. Similarly, the
identity of objects should be understood in terms of definitional
equality: objects are given by terms and two terms denote the same
object if they are definitionally equal. Of course, definitional equality
as a relation among the objects of some type A is not expressible as a
type; that is, there is no functional E with base A;A½A� such that
the type Ebc expresses the definitional equality of objects b and c of
type A.

There is, however, the notion of extensional equality between ob-
jects of a given type, which we can express in type theory. Let me
discuss this.

An immediate problem with defining extensional equality between
objects of the same type is this: Let c and d be of type 8x :A:F. Then
clearly the extensional equality of c and d should imply that, for all
extensionally equal a and b of type A, ca should be extensionally
equal to db. But the types Fa and Fb of ca and db, respectively, are
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not in general the same type, i.e., are not definitionally equal. So we
must define extensional equality between object of certain different
types.

In virtue of the Explicit Definition Theorem, every functional is of
the form

Fb1 � � � bn
where n � 0 and F is built up without using instantiation. If

Fc1 � � � cn
is another functional, then we call these two functionals congruent.
Obviously, congruence is an equivalence relation on the functionals.
We need to define the functional �FG of extensional equality for
congruent functionals F and G. We will drop the subscript on �FG

when no confusion results. Let F have base B and G base B0. �FG will
be defined as a functional with base B;B0½B�;F½B0½B��;G½B;F½B0½B���,
point-wise: for each b :B and b0 :B0

�FG bb0 :¼ �FbGb0 :

So it suffices to define �AB for congruent types A and B. But for
this we need only define what a � b means for objects a :A and b :B in
some polynomial extension of R. For then we obtain � as
kx :Aky :B:x � y.

We assume that the relation of extensional equality is defined for
the basic types and that it is an equivalence relation. We define it now
for the new types that we have introduced.

DEFINITION OF EXTENSIONAL EQUALITY. Let a :A and b :B.

– A ¼ B ¼ 2. Recalling that T> is the terminal type 1 and T? is the
initial type 0, it clearly suffices to define � by

a � b :¼ Ta !Tb:

– A ¼ Tc;B ¼ Td. Then c and d are of type 2.

a � b :¼ c � d:

– A ¼ 8F;B ¼ 8G, where F and G have bases C and D, respectively.
Then C and D are congruent and F and G are congruent.

a � b :¼ 8x :C9y :Dðx � yÞ ^ 8y :D9x :Cðx � yÞ

^8x :C8y :Dðx � y �! ax � byÞ:
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– A ¼ 9F;B ¼ 9G where F and G have bases C and D, respectively.
Again, C and F are respectively congruent to D and G.

a � b :¼ a1 � b1 ^ a2 � b2:

It is easy to deduce that

> 6� ?
8x :2 ½x � > _ x � ?�
8x :28y :Tx8z :Txy � z

and that extensional equality is transitive and symmetric. i.e.,

8x :A 8y :A 8z :A ½x � y ^ y � z �! x � z�
8x :A8y :A½x � y �! y � x�:

Moreover, for a given object a of type A in R, there is a deduction of
a � a. But, alas, we cannot deduce for an arbitrary type A that
extensional equality on A is reflexive:

8x :A ½x � x�: ð3Þ
The problem case is, of course, when A is of the form 8F, where F has
some base B. It would be consistent to add non-extensional functions
to R.

On the other hand, we could consider introducing the principle (3)
as a ‘regulative principle’. Thus, for each object b of a type A that is
introduced, there must be a proof E0b provided of b � b. Then we
would introduce the constant

EðAÞ :8x :A:ðx � xÞ:
by means of the definition

EðAÞb :¼ Eb:

However, we are not done, since according to our requirement for
introducing objects, we have to prove the reflexivity of EðAÞ, itself:
EðAÞ � EðAÞ. I.e., we have to have a proof of

8x :A8y :A½x � y �! EðAÞx � EðAÞy�:
The proof of this turns out to be something of a tour de force.

PROPOSITION. In any polynomial extension on R, from
p : a � a0; q : b � b0 and r : a � b, we can construct a proof of p � q.

In particular, then, from proofs r :u � v we can construct a proof
of EðAÞu � EðAÞv. We prove the theorem by induction on the type of
a. Note that from p, q and r we obtain a proof s of a0 � b0.
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CASE 1. a is of type 2. Then

p : Ta !Ta0 q : Tb !Tb0:

Thus

p1 : Ta �! Ta0 q1 : Tb �! Tb0:

We need p1 � q1, i.e.

8x :Ta 9y :Tbðx � yÞ 8y :Tb 9x :Taðx � yÞ
and

8x : Ta 8y : Tb½x � y �! p1x � q1y�
r1 :Ta �! Tb and r2 :Tb �! Ta. So, if u :Ta and v :Tb, then r1u :Tb
and r2v :Ta. So the first two conditions are satisfied. The last con-
dition is just ðTa !TbÞ �! ðTa0 !Tb0Þ, which is obtained from p
and q. By symmetry, we also have p2 � q2 and so p � q.

CASE 2. a : Tc. Then a0 : Tc0, b : Td, b0 : Td0. Then a � a0 is just c �
c0, etc.; and this case reduces to Case 1.

CASE 3. a : 9x : AFðxÞ. Then a1 : A and a2 : Fða1Þ, p1 : a1 � a01;
q1 : b1 � b01, etc; and so, by the induction hypothesis, p1 � q1 and
p2 � q2.

CASE 4. a : ð8x : A:FðxÞÞ; b : ð8y : B:GðyÞÞ; a0 : ð8x0 : A0:F0ðx0ÞÞ; b0 :
ð8y0 : B0:G0ðy0ÞÞ. In the following, I will drop the A in x : A, and
similarly for x0; y and y0. So p, as a proof of

8x9x0ðx � x0Þ ^ 8x09xðx � x0Þ ^ 8xx0½x � x0 �! ax � a0x0�
has three components, p0; p1; p2 which are proofs of the conjuncts,
respectively, and similarly for q; r and s. We need to show for
i � 0; 1; 2 that pi � qi. To prove p0 � q0, we need

8x9yðx � yÞ 8y9xðx � yÞ
which have the proofs r0 and r1, and

8xy½x � y �! p0x � q0y�:
Let u : A; v : B and assume u � v. p0u1 : A0, q0v1 : B0, p0u2 : u � p0u1
and q0v2 : v � q0v1. So p0u1 � q0v1 and hence, by the induction
hypothesis, p0u2 � q0v2. Thus, p0 � q0.

By symmetry, p1 � q1.
As for p2 and q2, we have

p2 : 8xx0½x� x0 �! ax� a0x0� q2 :8yy0½y� y0 �! by� b0y0�
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p2 � q2 is clearly equivalent to the conjunction of

8x9yðx � yÞ 8y9xðx � yÞ

8x09y0ðx0 � y0Þ 8y09x0ðx0 � y0Þ
which have the proofs r0 and s0, and

8xx0yy0½x � y ^ x0 � y0 �! p2xx0 � q2yy0� ð4Þ
Let u; u0; u� be of types A;A0 and u � u0, respectively, and let v; v0

and v� be of types B;B0 and v � v0, respectively. Then p2uu0u� : au �
a0u0 and q2vv0v� : bv � bv0. Let w :u � v and w0 :u0 � v0. Then r2uvw :
au � bv. So by the induction hypotheses, p2uu0u� � q2vv0v� follows
from the assumptions w and w0. This demonstrates (4).

NOTES

1 We could avoid this admittedly artificial treatment of variables of independent

types, but at the cost of a more complex structure of bases. Namely, we would define
bases to be trees, where, besides the null base, trees of the form

B1 � � �Bn

F

are admitted as bases when n � 0, B1; . . . ;Bn are bases and, F is a type-valued

function defined on B1 � � � � � Bn. An argument for this base is of the form
b1; . . . ; bn; c, where bk :Bk for each k ¼ 1; . . . ; n and c :Fðb1; . . . ; bnÞ. But, in the
interests of simplicity, if not in the interests of efficient computation, we will continue
to deal only with linear bases.
2 This form of 9-Elimination is different from that of Martin-Löf, e.g. in Martin-Löf
(1998), although, as he notes, the two forms are equivalent. It would seem that
projection more directly expresses what it means to have an object of type 9F.
3 Thus, the Comprehension Principle follows from the Law of Excluded Middle.
The converse is also true: Let B be any type. Using the Comprehension Principle,
there is a b :Pð2Þ such that Tðb?Þ !B. Hence, ::Tðb?Þ !::B. But even con-

structively, ::Tðb?Þ �! Tðb?Þ and so ::B �! B.
4 I discussed this in (1996); but the treatment, besides being unnecessarily compli-
cated, contained an error which was discovered in conversations with Robert Harper

and Christopher Stone at Carnegie-Mellon in Autumn 1999. Part of the complica-
tion in the earlier paper resulted from the fact that I thought that extensional
equality could be treated only in the classical system. We shall see that this is false.

REFERENCES
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GÖRAN SUNDHOLM

SEMANTIC VALUES FOR NATURAL DEDUCTION DERIVATIONS1

ABSTRACT. Drawing upon Martin-Löf ’s semantic framework for his constructive
type theory, semantic values are assigned also to natural-deduction derivations, while

observing the crucial distinction between (logical) consequence among propositions
and inference among judgements. Derivations in Gentzen’s (1934–5) format with
derivable formulae dependent upon open assumptions, stand, it is suggested, for
proof-objects (of propositions), whereas derivations in Gentzen’s (1936) sequential

format are (blue-prints for) proof-acts.

Contrasting Frege’s logical systems, using (many) axioms and (few)
rules of inference with those of Gentzen, using no axioms, but only
rules of inference that may discharge open assumptions, Michael
Dummett wrote:

Frege’s account of inference allows no place for a[n] . . . act of supposition. Gentzen
later had the highly successful idea of formalizing inference so as to leave a place for

the introduction of hypotheses.

Indeed,

it can be said of Gentzen that it was he who first showed how proof theory should be

done.2

An evaluation of this claim concerning the merits of Gentzen depends
on (i) in what sense proof theory is taken and on (ii) what, if any, was
his contribution thereto. There are, at least, three relevant readings of
the term proof theory:

(i) a ‘‘syntactic’’ manipulation-system that matches a prior
(‘‘semantic’’) consequence relation. Example: ‘‘Some consider
proof theories using Polish notation less easy to use in practice;
the formulae are so difficult to read’’.

(ii) investigations, or products of such investigations, carried out in
furtherance of the Hilbert Programme. For example, ‘‘Hilbertian
Proof Theory could not really prosper since Gödel’s incom-
pleteness theorem’’.

(iii) the branch of epistemology that deals with justifications of
demonstrative truths.
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Dummett’s claim certainly seems just for the first reading (i). Gent-
zen’s perspicuous systems that proceed according to his attractive
method of natürliches Schließen work very well indeed under this
heading. For example, standard propositional logic is complete, that
is, every tautology is derivable. The proof of this completeness the-
orem that was offered by Paul Bernays (in his Habilitationsschrift
from 1918, but only published in 1926) makes use of a method of
transformation into Conjunctive Normal Form. A wff in CNF is a
tautology if and only if each conjunct is a tautology. Such a conjunct,
being a disjunction of (possibly negated) sentential letters will
essentially have to be of the form

ðA _ :AÞ;
possibly interspersed with side-formulae. But this formula is certainly
derivable in classical logic, using indirect proof, and so, using re-
peated (_I) and (&I), is the CNF in question. Hence also the original
wff is derivable. With the aid of Gentzen’s Natural Deduction tech-
niques, this proof is within the reach of philosophy undergraduates.3

Similarly, a Henkin-style proof of the Completeness Theorem for
the predicate calculus is rendered very easy when one uses Natural
Deduction rules for �, ? and the universal quantifier 8 (instead of the
customary existential one 9).

The crucial Saturation Lemma that is central to Henkin’s method
then takes the form:

If R is a consistent set of sentences and the constant c does not
occur in R, then also R0 ¼def R [ fA½c=x� � 8xAg is consistent.
The proof runs very smoothly indeed:

Assume that R0 is inconsistent. That is,

R;A½c=x� � 8xA ‘?
whence, by (�I),

R ‘ :ðA½c=x� � 8xAÞ:
Thus, by propositional logic,

R ‘ A½c=x�&:8xA
By (&E)

R ‘ :8xA
R ‘ A½c=x�:

But the constant c is new with respect to R. Accordingly it behaves as
an eigen-parameter and so an application of (8I) is admissible. Thus:
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R ‘ 8xA;
whence, by (:E), also R is inconsistent.
Thus, if R0 is inconsistent, then so is R.
Therefore, if R is consistent, then so is R0. QED4

With the aid of this expository device, in my experience, also the
completeness of predicate logic is within the reach even of philosophy
undergraduates. Many more examples could be given, but surely the
above two suffice to substantiate Dummett’s claim under its first
reading.

Also for the second reading, namely proof theory as a covering
concept for contributions to the attempted execution of the Hilbert
Programme, we can be brief. The claim makes equally good sense
also here; Gentzen’s Sequent Calculus, especially in a version that
incorporates the infinitary x-rule (Schütte), or its modern streamlined
variant, using infinitary propositional logic after the fashion of Tait,
remains the unequalled tool for such contributions.5

The third reading, though, poses a complex challenge. It must be
remembered that Gentzen wrote after the ‘‘metalogical turn’’. His
Natural Deduction systems, as well as their Sequent Calculus cousins,
were designed primarily for contributions to the Hilbert programme.
These formal systems are metatheoretical in character, whence,
strictly speaking according to the letter of metamathematical legis-
lation, in spite of their agreeable properties, they are objects of study,
and not tools for use: Gentzen’s logic is docens only, rather than
utens. In particular, his formal languages are uninterpreted. His well-
formed formulae, and other metamathematical ‘‘expressions’’, are
(meta)mathematical objects. Owing to their lack of content, they do
not serve the purpose of communication; they are objects about which
one communicates. Gentzen’s metamathematical ‘‘expressions’’, in
fact, do not express, or have, content; on the contrary, they are ex-
pressed using real expressions.

This is in sharp contrast to how matters were prior to the metal-
ogical turn around 1930. Frege, in particular, used a formal language
for which he attempted to provide careful meaning-explanations so
that the language would be adequate for the practice of mathematical
analysis. His valiant efforts failed, owing to the emergence of Rus-
sell’s paradox, whence the task still remains incumbent upon us to
carry through a foundationalist project on a Fregean scale.

One prominent difference between Frege’s way of doing things and
our present (metalogical) mode of proceeding concerns the turnstile
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‘‘‘’’. Today it is used as a theorem predicate among the well-formed
formulae. The sign combination

‘ u

means that the well-formed formula u is a theorem, that is, that there
exists a certain (inductively defined) tree of well-formed formulae
with u as end formula. For Frege, though, the turnstile would be
prefixed to a meaningful sentence (in use) only, where it has the task
of making explicit the assertoric force of an assertion.

The first two readings of Proof Theory are squarely anchored to
the metalogical perspective, and with respect to them it is clear that
Dummett is right. When we consider the third, epistemological,
reading of the term, Gentzen’s own metamathematical manner of
proceeding won’t do, though, if we want to give Frege a fair hear-
ing. That is, we cannot compare a Frege–Hilbert style metamathe-
matical system with its corresponding metamathematical Gentzen
system, because without content in the object language there is no
knowledge there to be had in either calculus, be it a Frege–Hilbert
style system or Gentzen’s. Absent a contentual object-language,
systems of both kinds are mere objects of study. Accordingly, for an
evaluation of Dummett’s claim under its third, epistemological
reading, we need to consider an interpreted formal language. Such
languages have to be supplied with meaning explanations. It is only
against the background of such explanations that the comparison of
the two approaches can worked out; if we stay at the level of
metamathematical string-production machines the comparison
won’t be a fair one. Real inferences are what matters – not the
formal productions effected by a syntactic theorem-engine.

Thus, the proper interpretation of the precise details of Gentzen’s
formalisms becomes a matter of paramount importance. Specifically,
the following semiotic issues demand consideration:

(1) What is the proper syntax for the object language?
(2) What is the proper style for setting out Natural Deduction deri-

vations? Specifically, are there significant differences between
standard Natural Deduction and its sequential version?

(3) What is the proper semantic interpretation for the object-
language?

(4) What notions are needed in order to do justice to the pragmatics
of epistemic inference? Specifically, how does one cope with the
pragmatics of ‘‘assumptions’’?

The present paper seeks to answer this battery of questions.
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With respect to syntax it is a remarkable fact – though one not
always noted – that Gentzen uses not one, but two formulations of
Natural Deduction. Our initial task, accordingly, is to settle which, if
any, of these deserves preference above the other.

The syntax of the underlying first-order language of, say, arith-
metic can be taken in the usual fashion, and so can its semantics. I
prefer a constructive semantics, in casu that of Per Martin-Löf’s
constructive type theory, but most of what I say in this essay is neutral
with respect to the constructivist issue and ought,mutatis mutandis, to
be applicable without much trouble also within a Fregean framework
of bivalent truth-value semantics. This, though, is not enough to settle
the object-language syntax. The choice of what must be included in
the object-language is dependent on the semantics of sequents and the
pragmatics of assumptions. In particular, the object-theoretical status
of the sequent arrow ) must be settled, as must the need for the
inclusion of force-indicators for assertion and assumption.

The earliest version of Natural Deduction that Gentzen considered
was the published (1934–1935) formulation of his Göttingen disser-
tation that uses assumptions and derivations D of the form:

Here the Ai’s are undischarged assumption formulae and C is the
conclusion ‘‘proved’’, or derived, by, or in, the derivation D. In the
later (1936) version the derivable objects are sequents

A1;A2; . . . ;Ak ) C: ðSÞ
Standard-formulation assumptions A1;A2; . . . ;Ak are turned into
antecedent formulae of sequents. For both directions, mechanical
procedures, transforming derivations in one style to the other, can be
readily given, with quite low a recursion-theoretic complexity after
Gödelization, say elementary in the sense of Kalmár. In order to
carry out a fair comparison of Frege with Gentzen we have to indi-
cate how, if at all, derivations set out according to the two styles can
be interpreted as epistemic proofs.

On the basis of such considerations the Sequent Calculus formu-
lation of Natural Deduction is seen as nothing but a stylistic variant
of the standard format, for instance by Prawitz (1965, p. 102), (1971,
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§1.6, p. 243, ‘A trivial reformulation’), Dummett (1977, pp. 121–122:
‘Another variation’), (1991, p. 248: ‘We may therefore adopt the
simpler notation’), as well as by myself (1983). This, as we shall see in
the sequel, is not the full story.

The well-formed formulae of Gentzen’s formalism do double duty.
First, complex formulae are built up from other formulae; that is,
propositional connectives join well-formed formulae. Accordingly, the
wffs serve as formalistic simulacra for propositions. On the other hand,
the end-formula of a (closed) derivation-tree without open assump-
tions is a theorem and thus, for Gentzen, wffs also serve as formalistic
analogues to assertions (judgements made). The normal natural-lan-
guage rendering of propositions is via that-clauses formed out of
declaratives. Thus, in their first role, the wffs, when interpreted, should
be read as that-clauses. Then, however, they cannot serve in their
second role, since a single that-clause, on its own, cannot carry asser-
toric force. For their second role we need to use statements of the form

A is true

where A is a proposition. Thus for instance, an assertion to the effect
that snow is white, is not effected by a single utterance of the prop-
ositional phrase (that-clause)

that snow is white:

For this we need to append the words

is true

in order to get the declarative statement

that snow is white is true;

an utterance of which will serve equally well as an utterance of the
declarative

snow is white

in order to effect an assertion that snow is white.
Making use of this idea in order to disambiguate the double roles

of wffs when interpreting the calculi transform the derivation D into
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This step, though, is not enough to provide an interpretation for
Gentzen’s derivation-trees. We also need to account for phenomena
pertaining to the pragmatics of assertion and assumption. In the
degenerate case k ¼ 0, the conclusion statement

C is true

is asserted outright, whence we need a force-indicator (for assertion)
along the lines of the Fregean turnstile. However, this is still not
enough, since the assumption statements

Ai is true i ¼ 1; . . . ; k

are not asserted but ‘‘assumed’’. Accordingly, we might attempt to
use a reverse turnstile

a
for ‘‘assumptory’’ force. The derivation tree D0 is then transformed
into a derivation tree D00

This, prima facie, looks as if it might serve our purposes, but con-
sideration of a more elaborate derivation shows that this is not so:

(Proof-theoretical cognoscenti will recognise this derivation as the one
for which Dag Prawitz ([Prawitz (1965)], p. 37) defined his �-
reduction.)

Dressing the derivation tree with truth- and force-indicators
according to the above pattern yields
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Here the statements marked as 3, 4, and 5 are asserted, whereas 1 is
only assumed. The statement 2 that serves as premise of the (�I) that
has the statement 3 as conclusion, is neither asserted nor assumed.
Thus, our force-indicators for assertion and assumption do not suf-
fice to account for the phenomena of dependence that occur within
standard Natural Deduction derivations. We must take note here
that the statement

B is true

is not asserted outright, but only conditionally, under the assumption
that A is true. What is the logical form of such conditionalization?
One answer that suggests itself immediately is that of outright
assertion of the categorical statement that the implication (al prop-
osition) A � B is true. This, however, will not do, because we would
justify the categorical statement

A � B is true

with an assertion of the conditional statement

B is true, on condition that A is true.

A conditional weakening of assertoric force, on the other hand,
seems hardly possibly. The attempts in the literature—Belnap and
others6 – to treat of ‘‘conditional assertion’’, in my opinion, do not
succeed in weakening the kind of assertoric force that is involved at
the level of pragmatics, but alters the semantics of what is asserted
(still categorically). I will opt for a treatment that keeps assertion
categorical, whence there is no change in force, but conditionalizes
the kind of truth that is ascribed to the propositional content in
question.

Thus, the derivation tree D0 above, where the assumptions

A1 is true;A2 is true; . . . ;Ak is true

are still open, does not allow for the ascription of outright truth to
the proposition C, but only of truth on condition that A1 is true,A2 is
true, . . . , Ak is true.

The weakened, conditional truth in question will be

is true ðA1 is true;A2 is true; . . . ;Ak is trueÞ:
This, however, means that nodes in derivation trees are not covered
with statements of the form

A is true,
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but with statements of the conditional form. Effecting this transfor-
mation, the derivation tree D ultimately takes the form D0000

If we wish to include explicit force-indicators, the assertoric turnstile
is enough, since at every step a categorical assertion of a conditional
statement occurs. We must take care to distinguish between, on the
one hand,

A � B is true

and, on the other hand,

B is true ðA is true).

The latter statement can be variously read as

B is true under the assumption that A is true
on condition
given

or even as

If A is true then B is true.

Our analysis thus reveals that when fully interpreted, taking into
account also semantic and pragmatic features, Gentzen’s standard
Natural Deduction turns out to be nothing but the Sequent Calculus
version in disguise: as a matter of semantical fact, at each node the
assumptions are carried along. The transformation of

C is true ðA1 is true;A2 is true; . . . ;Ak is trueÞ ð�Þ
into

A1 is true;A2 is true; . . . ;Ak is true) C is true ð��Þ
makes this explicit.

Thus, when the deductively relevant features are made explicit in
order to account also for the pragmatic interaction of assumption with
assertion, standard Natural Deduction is but a variant of the Sequent
Calculus version, rather than the other way round. But the Sequent
Calculus version is, in essence, a Frege–Hilbert system. Its derivable
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objects, though, are not theorems that ascribe truth to (interpreted)
well-formed formulae; they are sequents of interpreted well-formed
formulae that, under the present reading, ascribe conditional, depen-
dent, truth to a content, whence the difference with Frege is minute.

In fact, the link to Frege can be tied much closer than this. As the
late Pavel Tichy (1988, pp. 248–252) observed, iterated Frege con-
ditionals need not be seen as repeated implications among proposi-
tional contents.7 Instead, they can equally well be taken as
Gentzen(–Hertz) sequents. Customarily the repeated Frege conditional

is taken with the (same) meaning (as the well-formed formula)

ðA1 � ðA2 � ð. . . � ðAk � CÞ . . .ÞÞÞ:
However, rotating the Frege conditional 90� clockwise, while altering
the notation only slightly, produces a familiar result, namely,

A1;A2; . . . ;Ak ) C:

This correspondence between the calculi of Frege and Gentzen
operates even down to the considerable fine-structure of rules,
sometimes showing a surprising(?) resemblance of terminology.

The need to account for the pragmatics of assumptions forces us
to give primacy to the Sequent Calculus version of natural deduction.
What, then, do unadorned Sequent Calculus derivations, that begin
with axioms of the form

B true) B true,

and continue with applications of sequential introduction and elim-
ination rules that operate to the right of the arrow, yielding sequents
of the form ð��Þ above, express? What is their right interpretation?
Kreisel (1971, 1971a, 1973), echoing Brouwer, holds that they stand
for (‘refer to’) abstract mental processes. It is certainly right that
proof, or better demonstration, ultimately pertains to mental acts (of
getting to know). (According to the OED, a demonstration is that
through which something is shown or made known.) Wittgenstein’s
reasons to reject private reference, however, apply here as well.
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Accordingly, it does not seem correct to let derivation trees refer to
individual mental acts. Abstract species of such acts (after the fashion
of Husserl) constitute a better alternative. If that is what Kreisel
means by the mental processes being abstract, it might be possible to
go along with his proposal. Nevertheless, I prefer to let the Sequent
Calculus derivation-trees express blue-prints, or manuals, for mental
acts of knowledge, in the same way that a score of music is a blue-
print for a performance or a chess score-sheet is a blueprint for a
game that can be played. If one is in possession of such a manual, by
following it through one can oneself carry out an act of knowledge
that produces the theorem in question.

Our discussion has led to an account of the meaning of Gentzen’s
standard Natural Deduction formalism. The derivation trees are
variants of derivations in the Sequent Calculus version and sequents
express that a content is true, dependent on the truth of certain
contents. This is one of the several original readings of
sequents—why Gentzen, and before him Paul Hertz, dropped the
con- part of the medieval consequentia I do not know—that Gentzen
offered (1932, p. 330):

Ein Satz* hat die Form

u1u2 . . . um ! v ðm � 1Þ . . .

[M]an . . . liest den ‘‘Satz’’ so: Wenn die Aussagen u1; . . . ; um richtig
sind, so ist auch die Aussage v richtig.

Richtig is how propositional truth was rendered by the Hilbert
school, for instance in Hilbert–Ackermann’s Grundzüge. One should
note that the sequents express material rather than formal conse-
quence, that is, validity under all substitution instances à la Bolzano
is not demanded. This is repeated also in Gentzen ([Gentzen (1934–
5)], pp. 89–90), where the sequent (S) is explained as

A1 & A2 & . . . & Ak � C:8 ð#Þ

This, though, is not synonymous with the original explanation, even
though the two explanations provide the sequents with the same
assertion conditions. In Gentzen (1936, p. 512) this is put right. There
(S) should be read:

Unter den Annahmen A1;A2; . . . ;Ak gilt.B9

This reading Gentzen retained also in (1938, p. 21).
My preferred contentual reading of the derivation trees gives pride

of place to Sequential Natural Deduction and regards standard
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Natural Deduction as a mere variant of this. Under this reading,
derivation trees are blueprints for mental acts of knowledge; no
objectual semantic values are assigned.

I now wish to consider another reading that does assign semantic
values to standard Natural Deduction derivation trees. The previous
discussion has been neutral with respect to the semantics used and the
ensuing notion of proposition, presupposing only that the language is
an interpreted one. Now, however, I shall avail myself of Heyting–
Kolmogoroff’s constructive notion of proposition, say, according to
its formal rendering in Martin-Löf’s constructive type theory.10 A
proposition is thus explained in terms of how its canonical proof-
objects may be formed and when two such objects are equal canon-
ical proofs. Note that what is at issue here are proofs of propositions.
This is a notion that is novel with intuitionism. Previously, all
proving throughout the history of logic has taken place at the level of
judgement and not at that of their contents. Accordingly, within the
constructivist framework, it is strictly necessary to keep apart dem-
onstrations, that is, proof(-acts) of judgements (that propositions are
true) and proof(-object)s of propositions. Demonstration is an epi-
stemic notion, but the latter novel notion is not. Its closest analogue
within (the framework of) classical semantics is that of a ‘‘truth
maker’’ in a correspondence theory of truth for propositions. Thus it
serves as a constructivist analogue of Tractarian Sachverhalte, the
prototypical classical truth-makers, or perhaps better of (Husserlian)
moments.

Heyting’s meaning explanations draw upon canonical proofs that
have to be cast in certain forms. In general, a proof of a proposition is
a method for obtaining such a canonical proof by means of execution
(evaluation). Thus, for instance, when A and B are propositions
(whence we know how their canonical proofs may be put together), a
canonical proof for the implication, that is, the proposition A � B, is
of the introductory form:

� IðA;B; ðxÞbÞ;
where b is a proof-object for B, given that x is a proof-object for A,
and ðxÞb is a function, defined by (lambda-)abstraction, such that
when a is a proof of A, then

ðxÞbðaÞ ¼ b½a=x�:
The second reading, then, that I want to offer for standard natural
deduction derivation is that of their being (possibly dependent)
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proof-objects for propositions. Thus, for instance, under this inter-
pretation the derivation D above is a dependent proof object:

D is a proof of C,
given that x1 is a proof of A1; x2 is a proof of A2; . . . xk is a proof of
Ak.

Hence, when a1 is a proof of A1, a2 is a proof of A2; . . . ak is a proof of
Ak,

D½a1=x1; . . . ; ak=xk� is a proof of C:

In terms of standard Natural Deduction, this substitution corre-
sponds to putting the closed derivations D1 of A1; . . . ;Dk of Ak on
top of the open assumption formulae A1;A2; . . . ;Ak in the derivation
tree D, whence a closed derivation for the conclusion C results.

Above Hertz–Gentzen sequents were interpreted as statements
ascribing conditional truth to propositions. The constructive
semantical framework, nevertheless, allows also for another way of
interpreting a sequent S. We then treat

sequent S holds

as a (novel) form of judgement that generalizes the common form of
judgement

proposition A is true.
The semantical explanation of the statement that a sequent holds is–
naturally enough–a generalization of the corresponding explanation
for propositional truth:

A1;A2; . . . ;Ak ) C holds

¼ there exists a function from Proof

ðA1Þ; . . . ;ProofðAkÞ to Proof ðCÞ:
Identifying propositions with their proof-types we get a more com-
pact expression:

the function type ðA1;A2; . . . ;AkÞC exists.

In order to distinguish these two readings which I call open and
closed, respectively of the sequent S, also at the level of notation, the
latter, closed reading that expresses the holding of a consequence
relation between propositions, will be written:

ðA1;A2; . . . ;AkÞ ) C holds. ðS0Þ
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It must be stressed that this holding of sequents is material only. The
closed sequent S0 holds when the matching implication (#) is true.
Logical truth of (#), on the other hand, is not required for the mere
holding of ðS0Þ. Corresponding to the logical truth of (#), that is when
ðS0Þ holds under all variations, à la Bolzano, is the notion of it
holding logically (come what may, independently of what is the case,
under all variations, etc.).

Finally let me note that, while Gentzen and Hertz dealt only with
open sequents, the theory of closed sequents has been explored pri-
marily by Peter Schroeder-Heister in (1984), as well as in his two
dissertations (1981) and (1987).

NOTES

1 This paper develops in greater detail a line of thought that was adumbrated in my
(1997), (1998a), (1998b), and (2000).
2 Dummett (1973, p. 309, and p. 435, respectively).
3 One only needs to derive the following laws that are needed for transforming a wff
into a deductively equivalent CNF:

A � B a‘ :A _ B ð1Þ
A _ B a‘ B _ A ð2Þ
A & B a‘ B & A ð3Þ
A _ ðB _ CÞ a‘ ðA _ BÞ _ C ð4Þ
A & ðB & CÞ a‘ ðA & BÞ & C ð5Þ
A _ ðB & CÞ a‘ ðA _ BÞ & ðA _ CÞ ð6Þ
A &ðB _ CÞ a‘ ðA & BÞ _ ðA & CÞ ð7Þ
:ðA _ BÞ a‘ :A & :B ð8Þ
:ðA & BÞ a‘ :A _ :B ð9Þ
::A a‘ A ð10Þ

4 Note that this is a constructive proof: inconsistency is a positive notion (R is
inconsistent ¼ R does derive ?), whereas consistency is a negative one (R is con-

sistent ¼ R does not derive ?). Thus the final contraposition goes in the construc-
tively valid direction.
5 Schütte (1950a), Tait (1968).
6 Belnap(1973).
7 Tichy’s observation seems to have gone largely unnoticed. A decade later von
Kutschera (1996) and Schroeder-Heister (1999) both discuss the matter in apparent
unawareness of Tichy’s earlier, very explicit treatment. Tichy’s congenial Chapter 13

- Inference - definitely deserves to become more known, as does his paper ‘On
Inference’ (1999).
8 Other readings are possible, for instance,
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:A1 _ :A2 _ . . . _ :Ak _ C

or

ðA1 � ðA2 � ð. . . � ðAk � CÞ . . .ÞÞÞ:

Both were used by Schütte (1950) in his early reformulations of Gentzen’s work. The
first form has been streamlined by Tait (1968), who used finite sets of formulae,
disjunctively read, with the use of negations rendered superfluous (de Morgan!)

except in front of atomic formulae – Schwichtenberg (1977) gives a beautiful treat-
ment of cut-elimination for the predicate calculus based on this approach. The
second form is used for intuitionistic systems, where the de Morgan laws are not

available, but has not proved more convenient to use than Gentzen’s original for-
mulation in terms of sequents.
9 Where I have changed Gentzen’s Fette Fraktur.
10 Martin Löf (1984).
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KOSTA DO�SEN

MODELS OF DEDUCTION*

ABSTRACT. In standard model theory, deductions are not the things one models.

But in general proof theory, in particular in categorial proof theory, one finds models
of deductions, and the purpose here is to motivate a simple example of such models.
This will be a model of deductions performed within an abstract context, where we

do not have any particular logical constant, but something underlying all logical
constants. In this context, deductions are represented by arrows in categories
involved in a general adjoint situation. To motivate the notion of adjointness, one of

the central notions of category theory, and of mathematics in general, it is first
considered how some features of it occur in set-theoretical axioms and in the axioms
of the lambda calculus. Next, it is explained how this notion arises in the context of
deduction, where it characterizes logical constants. It is shown also how the cate-

gorial point of view suggests an analysis of propositional identity. The problem of
propositional identity, i.e., the problem of identity of meaning for propositions, is no
doubt a philosophical problem, but the spirit of the analysis proposed here will be

rather mathematical. Finally, it is considered whether models of deductions can
pretend to be a semantics. This question, which as so many questions having to do
with meaning brings us to that wall that blocked linguists and philosophers during

the whole of the twentieth century, is merely posed. At the very end, there is the
example of a geometrical model of adjunction. Without pretending that it is a
semantics, it is hoped that this model may prove illuminating and useful.

1. INTRODUCTION

According to the traditional vocation of logic to study deductive
reasoning, deductions should indeed be of central concern to logi-
cians. However, as an object of study, deductions have really a cen-
tral place in a rather restricted area of logic called general proof theory
– namely, proof theory done in the tradition of Gentzen. There, by
studying normalization of logical deductions, one is led to consider
criteria of identity of deductions. The goal of this brand of proof
theory might be to find a mathematical answer to the philosophical
question ‘‘What is deduction?’’, as recursion theory has found, with
much success, a mathematical answer to the question ‘‘What is
computation?’’.
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In proof theory done in the tradition of Hilbert’s program, where
one is concerned with consistency proofs for fragments of mathe-
matics, deducing is less central. The goal there is not to answer the
question ‘‘What is deduction?’’, but to prove consistency by some
particular means. Hilbertian proof theory, incorporating the funda-
mental lessons of Gödel, was for a long time dominant in proof
theory, but nowadays it seems it may be yielding ground. It has
become a rather secluded branch of mathematics, where one studies
intricate problems about ordinals, not particularly appealing to other
logicians, let alone other mathematicians.

However, following a general trend, seclusion has become the
norm in logic, as well as elsewhere in mathematics. The trend is quite
conspicuous in model theory, which was no doubt the dominant
branch of logic during a long period in the second half of the twen-
tieth century. As the century was drawing to its end, so model theory,
which had drifted to some particular branches of algebra, appeared
more and more esoteric. The remaining two great branches of logic,
recursion theory and set theory, leave the same impression nowadays.
Logicians of these various branches meet at congresses, and politely
listen to each other’s talks, but don’t seem much moved by them.

Although we are speaking here of the dominant branches of logic,
deductive reasoning hardly makes their subject matter. The study of
deduction was for a long time confined to rather marginal fields of
nonclassical logics. Perhaps the growth of general proof theory, and
its connection with category theory and computer science, might
bring deduction to the fore. (In that, the role of category theory and
computer science would presumably not be the same, the former
being otherworldly and the latter mundane, but – who knows – the
two ways might end up by being in harmony.)

In standard model theory, deductions are not the things one
models. But in general proof theory, in particular in categorial proof
theory, one finds models of deductions, and my purpose in this talk is
to motivate a simple example of such models. This will be a model of
deductions performed within an abstract context, where we don’t
have any particular logical constant, but something underlying all
logical constants. In this context, deductions are represented by
arrows in categories involved in a general adjoint situation.

To motivate the notion of adjointness, one of the central notions
of category theory, and of mathematics in general, we shall first
consider how some features of it occur in set-theoretical axioms and
in the axioms of the lambda calculus. Next, it will be explained how

KOSTA DO�SEN640



this notion arises in the context of deduction, where it characterizes
logical constants. We shall also see how the categorial point of view
suggests an analysis of propositional identity. The problem of
propositional identity, i.e., the problem of identity of meaning for
propositions, is no doubt a philosophical problem, but the spirit of
the analysis proposed here will be rather mathematical. Finally, we
shall consider whether models of deductions can pretend to be a
semantics. I merely ask this question, which, as so many questions
having to do with meaning, brings us to that wall that blocked lin-
guists and philosophers during the whole of the twentieth century. At
the very end, we reach our example of a geometrical model of
adjunction, for which I don’t pretend that it is a semantics. Never-
theless, I hope that this model may prove illuminating and useful.

2. TERMS, PROPOSITIONS AND INVERSION

In logic, as well as in the philosophy of language, we are especially
interested in two kinds of linguistic activity: referring and asserting.
We engage in the first kind of activity with the help of terms (which
abbreviates individual terms), while for the second we use propositions
(or formulae). The two grammatical categories of terms and propo-
sitions are basic grammatical categories, with whose help other
grammatical categories can be defined as functional categories:
predicates map terms into propositions, functional expressions map
terms into terms, and connectives and quantifiers map propositions
into propositions.

The set-abstracting expression fx : . . .g maps a proposition A into
the term fx : Ag. This term is significant in particular when x is free in
A, but it makes sense for any A, too. The expression x 2 . . . is a unary
predicate: it maps a term a into the proposition x 2 a. The ideal set
theory would just assume that fx : . . .g and x 2 . . . are in some sense
inverse to each other. Namely, wewould have the following postulates:

Comprehension: x 2 fx : Ag $ A;

Extensionality: fx : x 2 ag ¼ a;

provided x is not free in a. In the presence of replacement of equiv-
alents and of Comprehension, Extensionality is equivalent to the
more usual extensionality principle

8xðx 2 a1 $ x 2 a2Þ ! a1 ¼ a2;
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provided x is not free in a1 and a2 (see Do�sen 2001, Section 2). We
know that ideal set theory is inconsistent if in propositions we find
negation, or at least implication. To get consistency, either fx : Ag
will not always be defined, and we replace Comprehension by a
number of restricted postulates, or we introduce types for terms.

Instead of fx : . . .g let us now write ðkx . . .Þ, and instead of x 2 . . .
let us write ð. . . xÞ. Then Comprehension and Extensionality become
respectively

ððkxAÞxÞ $ A;

ðkxðaxÞÞ ¼ a:

If we take that ðkx . . .Þmaps a term a into the term ðkxaÞ, while ð. . .xÞ
maps a term a into the term ðaxÞ, and if, furthermore, we replace
equivalence by equality, and omit outermost parentheses, our two
postulates become the following postulates of the lambda calculus:

b-equality: ðkxaÞx ¼ a;

g-equality: kxðaxÞ ¼ a;

provided x is not free in a in g-equality. The present form of b-
equality yields the usual form in the presence of substitution for free
variables. (The usual form of b-equality and g-equality imply a-
equality.) The fact that the lambda calculus based on b-equality and
g-equality is consistent is due to the fact that the language has been
restricted, either by preventing anything like negation or implication
to occur in terms, or by introducing types. Without restrictions, in
type-free illative theories, we regain inconsistency.

So the general pattern of Comprehension and Extensionality, on
the one hand, and of b and g-equality, on the other, is remarkably
analogous. These postulates assert that a variable-binding expression
Cx and application to a variable Ux are inverse to each other, in the
sense that UxCxa and CxUxa are either equivalent or equal to a,
depending on the grammatical category of a. It is even more
remarkable that theories so rich and important as set theory and the
lambda calculus are based on such a simple inversion principle.

3. DEDUCTIONS AND INVERSION

Besides referring and asserting, there is a third kind of activity of
particular interest to logic: deducing, which is also linguistic, as far as
it consists in passing from propositions to propositions.
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To speak about deductions we may use labelled sequents of the
form f : C ‘ B, where C is a collection of propositions making the
premises, the proposition B is the conclusion, and the term f records
the rules justifying the deduction. If the premises can be collected into
a single proposition, and this is indeed the case when C is finite and we
have a connective like conjunction, then we can restrict our attention
to simple sequents of the form f : A ‘ B, where both A and B are
propositions. We can take that f : A ‘ B is an arrow in a category in
whichA and B are objects. When we don’t need it, we omit mentioning
the type A ‘ B of f : A ‘ B, and write just the arrow term f.

Special arrows in a category are axioms, and operations on arrows
are rules of inference. Equalities of arrows are equalities of deduc-
tions. For that, categorial equalities between arrows have to make
proof-theoretical sense, as indeed they do, by following closely
reductions in a normalization or cut-elimination procedure in intui-
tionistic and substructural logics.

In categorial proof theory we are not concerned with a conse-
quence relation, but with a consequence graph, where more than one
arrow, i.e., deduction, can join the same pair of objects, i.e., propo-
sitions. This should be the watershed between proof theory and the
rest of logic. It is indeed a defect of traditional general proof theory,
unaware of categories, that it is still very much under the spell of
sequents understood in terms of consequence relations – as if all
deductions with the same premises and conclusions were equal. The
traditional theory has trouble in representing deductions and in
coding them. It draws trees and has no clear criteria of identity of
deductions. (Applying the typed lambda calculus in general proof
theory usually brings awareness of categories.)

We shall now inquire whether there is something in the context of
deductions, as they are understood in categories, which would be
analogous to the inversion principle we encountered before in set
theory and the lambda calculus.

Take a category K with a terminal object T (this object behaves
like the constant true proposition), and take the polynomial category
K½x� obtained by extending K with an indeterminate arrow x:T ‘ A
(see Lambek and Scott 1986, Part I, Chapters 4–5.; Do�sen 2001). We
obtain K½x� by adding to the graph of arrows of K a new arrow
x : T ‘ A, and then by imposing on the new graph equalities required
by the particular sort of category to which K belongs. Note that K½x�
is not simply the free category of the required sort generated by the
new graph, because the operations on arrows of K½x� should coincide
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with those of K on the arrows inherited from K (see Do�sen 2001,
Section 5). We can conceive of K½x� as the extension of a deductive
system K with a new axiom A.

Now consider the variable-binding expression Cx that assigns to
every arrow term f : C ‘ B of K½x� the arrow term Cxf : C ‘ A! B of
K, where!, which corresponds to implication, is an operation on the
objects of K (in categories, A! B is more often written BA). Passing
from f to Cxf corresponds to the deduction theorem. Conversely, we
have application to x, denoted by Ux, which assigns to an arrow term
g : C ‘ A! B of K the arrow term Uxg : C ‘ B of K½x�. Now,
passing from g to Uxg corresponds to modus ponens. If we require
that

ðbÞ UxCx f ¼ f;

ðgÞ CxUxg ¼ g;

we obtain a bijection between the hom-sets KðC;A! BÞ and
K½x�ðC;BÞ. If, moreover, we require that this bijection be natural in
the arguments B and C, we obtain an adjunction. The left-adjoint
functor in this adjunction is the heritage functor from K to K½x�,
which assigns to objects and arrows of K their heirs in K½x�, while the
right-adjoint functor is a functor from K½x� to K that assigns to an
object B the object A! B. We find such an adjunction in cartesian
closed categories, whose arrows correspond to deductions of the
implication-conjunction fragment of intuitionistic logic, and also in
bicartesian closed categories, whose arrows correspond to deductions
of the whole of intuitionistic propositional logic.

In cartesian closed and bicartesian closed categories, as well as in
cartesian categories tout court, we also have the adjunction given by
the bijection between the hom-sets KðA� C;BÞ and K½x�ðC;BÞ. Here
the heritage functor is right adjoint, and a functor from K½x� to K that
assigns to an object C the object A� C is left adjoint. The binary
product operation on objects � corresponds to conjunction, both
intuitionistic and classical, as ! corresponds to intuitionistic impli-
cation.

These adjunctions, which were first considered by Lambek, and
which he called functional completeness, are a refinement of the
deduction theorem (see Lambek 1974; Lambek and Scott 1986,
Part I; Do�sen 1996, 2001). Through the categorial equivalence of the
typed lambda calculus with cartesian closed categories, which was
also discovered by Lambek, they are closely related to the so-called
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Curry–Howard correspondence between typed lambda terms and
natural-deduction proofs. They shed much light on this correspon-
dence. The adjunctions of functional completeness may serve to
characterize conjunction and intuitionistic implication.

4. LOGICAL CONSTANTS AND ADJUNCTION

Adjointness phenomena pervade logic, as well as much of mathe-
matics. An essential ingredient of the spirit of logic is to investigate
inductively defined notions, and inductive definitions engender free
structures, which are tied to adjointness. We find also in logic the
important model-theoretical adjointness between syntax and seman-
tics, behind theorems of the ‘‘if and only if’’ type called semantical
completeness theorems. However, adjunction is present in logic most
specifically through its connection with logical constants.

Lawvere put forward the remarkable thesis that all logical con-
stants are characterized by adjoint functors (see Lawvere 1969).
Lawvere’s thesis about logical constants is just one part of what he
claimed for adjunction, but it is a significant part.

Actually, Lawvere didn’t characterize conjunction and intuitionistic
implication through the adjunctions of functional completeness we
mentioned in the preceding section. Instead, there is for conjunction,
i.e., binary product in cartesian categories, the adjunction between the
diagonal functor D : K ! K�K as left adjoint and the internal
product bifunctor � : K�K ! K as right adjoint. Coproduct, i.e.,
disjunction, is analogously left adjoint to the diagonal functor. The
terminal and initial objects, which correspond respectively to the con-
stant true proposition and the constant absurd proposition, may be
conceived as empty product and empty coproduct. They are charac-
terized by functors right and left-adjoint, respectively, to the constant
functor into the trivial categorywith a single object and a single identity
arrow. Functors tied to the universal and existential quantifiers are,
respectively, right adjoint and left adjoint to the substitution functor,
which we find in hyperdoctrines, or fibered categories.

In all that, one of the adjoint functors carries the logical constant
to be characterized, i.e., it involves the corresponding operation on
objects and depends on the inner constitution of the category, while
the other adjoint functor is a structural functor, which does not
involve the inner operations of the category (‘‘structural’’ is here used
as in the ‘‘structural rules’’ of Gentzen’s proof theory). The diagonal
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functor and the constant functor are clearly structural: they make
sense for any sort of category. The substitution functor may also be
conceived as structural, and such is the heritage functor too. (We
relied above on the presence of the terminal object to characterize
implication through functional completeness, but this was done only
to simplify the exposition, and is not essential.)

Lawvere’s way to characterize intuitionistic implication through
adjunction is by relying on the bijection between KðA� C;BÞ and
KðC;A! BÞ, which can be obtained by composing the two adjunc-
tions with the heritage functor mentioned in the preceding section.
The disadvantage of this characterization is that none of the adjoint
functors A� and A! is structural (though the former resembles such
a functor more than the latter).

In the late seventies (see Do�sen 1989, which summarizes the results
of my doctoral thesis written ten years before), I was engaged in
characterizing logical constants of classical, intuitionistic and sub-
structural logics through equivalences between a sequent involving
the logical constant in question at a particular place and a structural,
purely schematic, sequent, not involving any logical constant. A
typical such equivalence is

C ‘ A! B iff A;C ‘ B:

I called such equivalences analyses, and not definitions, because they
may lack some essential traits of definitions, like conservativeness and
replaceability by the defining expression in every context.

I realized more recently that my analyses were just superficial
aspects of adjunctions. They pointed to the inversion principle, but
didn’t mention the naturalness condition of adjunctions. This last
condition may perhaps be taken as implicit, but I lacked a clear idea
of identity of deductions. However, this idea is also unclear in all of
traditional general proof theory untouched by categorial proof the-
ory. Gentzen’s and Prawitz’s inversion principle for natural deduc-
tion, which says that the elimination rules can be recovered from the
introduction rules, amounts to analytical equivalence, and is in the
same way a superficial aspect of adjointness (see Gentzen’s Unter-
suchungen €uber das logische Schließen, II, § 5.13, and Prawitz 1965,
Chapter II).

However, what I did brings something which I think should be
added to Lawvere’s thesis: namely, the functor carrying the logical
constant should be adjoint to a structural functor recording some
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features of deduction. With this amendment the thesis might serve to
separate logical constants from other expressions.

I suppose that my notion of analysis corresponds to an adjoint
situation that does not amount to an adjoint equivalence of categories,
while ordinary definitions are based on an equivalence of categories.

In some poignant passages of his book on Frege, Dummett has
argued very convincingly that the inversion principle of natural
deduction, discovered by Gentzen and studied by Prawitz, operates
in ordinary language too (see Dummett 1973, pp. 396–397, 454–
455). With pejorative expressions this principle is broken so that
sufficient conditions for an assertion are weaker than the conclu-
sions we may draw from the assertion. ‘‘Long-winded’’ may be
taken as a pejorative expression because conclusions one can infer
from the assertion that somebody’s performance is such, like the
conclusion that the matter should be ignored, need not be war-
ranted by a sufficient condition for the assertion, which can be
merely that the thing is long. Actually, the point of using pejoratives
is to licence some otherwise unwarranted inferences. (Unwarranted
conclusions in the case of pejoratives are condemning, whereas the
point of using flattery terms is to licence commending conclusions,
which may also be unwarranted.)

To complete what Dummett is saying, one could add that with
euphemisms, dually to what one has with pejoratives, the sufficient
conditions for an assertion are stronger than the conclusions we are
expected to draw from the assertion. A sufficient condition for
asserting that some text is ‘‘not concise’’ might be that it is unbear-
ably long, and the conclusion that it should be ignored, which could
be drawn from this sufficient condition, is meant to be blocked by
using the euphemism. The point of using euphemisms is to block
unwanted inferences (or, at least, the speaker pretends he means to
block them).

5. IDENTITY OF DEDUCTIONS AND PROPOSITIONAL IDENTITY

Many successful philosophical analyses are achieved by a shift in
grammatical categories. Such is Frege’s analysis of the predicate
‘‘exists’’ in terms of the existential quantifier, or Russell’s analysis of
definite descriptions. We find this shift in grammatical form in the
analyses of logical constants mentioned in the preceding section. In
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C ‘ A! B iff A;C ‘ B

the connective of implication is analyzed in terms of the turnstile,
which stands for deducibility.

A simple example of a good analysis with shift in grammatical form,
mentioned by Frege in Die Grundlagen der Arithmetik (§64–68), is the
analysis of the notion of the direction of a line a as the equivalence class
of lines parallel to a. This amounts to the analytical equivalence

The direction of a is equal to the direction of b iff a is parallel to b.
What is achieved in passing from the left-hand side of this equiva-
lence to the right-hand side is that we have eliminated a spurious
individual term ‘‘the direction of a’’ and used instead the uncontro-
versial binary predicate ‘‘is parallel to’’.

Leibniz’s analysis of identity, given by the equivalence
a is identical to b iff ‘‘a’’ can always be replaced by ‘‘b’’ salva

veritate,
achieves a fundamental grammatical shift. It assumes as given and
uncontroversial propositional equivalence, i.e., identity of truth
value, and analyzes in terms of it identity of individuals. It is because
of this shift that Hide Ishiguro could find behind Leibniz’s analysis a
form of Frege’s context principle, which says that we should explain
the sense of a word in terms of the truth and falsity of propositions in
which it may occur (see Ishiguro 1990, Chapter II). To put it in a
nutshell, Frege’s principle says that when it comes to explaining how
language functions, asserting is more basic than referring (see
Dummett 1973, pp. 3–7).

What about deducing? Is it less or more basic than asserting or
referring? If we surmise that it is more basic than asserting, in the
order of explaining how language functions, we have opened the way
to analyze propositional identity in terms of an equivalence relation
between deductions, much as Leibniz analyzed identity of individuals
in terms of propositional equivalence. The most plausible candidate
for an equivalence relation that would do the job is identity of
deductions as codified in categories. We have said that this equiva-
lence of deductions is motivated by normalization in natural deduc-
tion or by cut elimination.

Propositional equivalence, which in classical logic is defined by
identity of truth value, is understood as follows in a proof-theoretical
context:

A is equivalent to B iff there is a deduction f : A ‘ B and a deduction
g:B ‘ A.
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This relation between the propositions A and B, which certainly
doesn’t amount to the stricter relation of propositional identity, does
not rely on a criterion of identity of deduction.

By relying on such a criterion, we could analyze propositional
identity as follows, quite in tune with how category theory under-
stands identity of objects:

A is the same proposition as B iff A and B are isomorphic.

Isomorphism is here understood in the precise way how category
theory understands isomorphism of objects: namely, there is a
deduction, i.e., arrow, f : A ‘ B and a deduction g : B ‘ A such that g
composed with f and f composed with g are equal respectively to the
identity deductions from A to A and from B to B. That two objects
are isomorphic means that they behave exactly in the same manner in
deductions: by composing, we can always extend deductions involv-
ing one of them, either as premise or as conclusion, to deductions
involving the other, so that nothing is lost, nor gained. There is
always a way back. By composing further with the inverses, we return
to the original deductions.

6. IS THERE A SEMANTICS OF DEDUCTION?

In theoretical linguistics syntactical theory was much more prosper-
ous than semantical theory. Not so in logic, where semantics, i.e.,
model theory, has for a long time been preponderant over syntax.

Logicians are concerned with language much more than other
mathematicians, and theoldnameofmathematical logic, symbolic logic,
rightly stressed that. It is true that linguistic preoccupations are not
foreign to someother branches ofmathematics – in particular, algebra –
but their involvement with language rarely matches that of logic.

Proof theory is entirely within the sphere of language, and, with
many good reasons, syntactical is usually taken as synonymous with
proof-theoretical. It is also pretty secure to consider that the set-
theoretic models of classical model theory give the semantics of
mathematical theories based on classical logic. But to call ‘‘seman-
tics’’ the production of any kind of models for other sorts of systems,
like the lambda calculus, or systems of nonclassical logics, may well
be abusive, if we understand ‘‘semantics’’ à la lettre, as the theory
giving an explanation of meaning.

Did the untyped lambda calculus really acquire meaning only
when, at a rather late date, some sorts of models were found for it?
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Do the extant models of intuitionistic logic, or various substructural
logics, give meaning to these logics, which are otherwise motivated
mostly by proof theory? And what to say about various uses of the
word ‘‘semantics’’ in theoretical computer science, or its borderlines,
where some rather syntactical activities, like coding natural-deduc-
tion proofs with typed lambda terms, or just translating one formal
language into another, are deemed a matter of semantics?

Completeness proofs are the glory of logic (though incompleteness
proofs are even more glorious), but they should not serve as an excuse
for the cheap question, often posed irresponsibly after colloquium
talks, or in referee’s reports: ‘‘What can you tell us about the semantics
of your system?What about its models?’’ And this question should not
receive a cheap answer, which consists in producing anything resem-
bling models, or even not resembling them, as a semantics.

Classical model-theoretical semantics gives meaning to referential
expressions like terms through models, and propositions acquire truth
values through these models, but these models can hardly serve to give
meaning to deductions. A consequence relation may be defined with
respect to models, but we said that we need rather a consequence
graph, where between the same premise and conclusion there may be
several deductions. From the point of view of classical model theory,
deductions are not bound to the models, but only to the language.

The fact that there is no room for deductions in the classical
semantical framework, whose spirit is Platonistic, should be signifi-
cant for the philosophy of mathematics. That part of mathematics
which is bound to deduction – namely, logic – could be understood in
a formalistic vein, whereas in the rest of mathematics we would have
Platonism. This sort of formalistic conception would resemble Hil-
bert’s formalism in so far as it is not purely formalistic – it under-
stands formalistically just one part of mathematics. However, it
differs very much from Hilbert’s conception by finding formalism in
logic, whereas Hilbert looked for it in those parts of mathematics
transcending the finite. Moreover, Hilbert understood the founda-
tional, finitistic, part of mathematics in a constructivist vein. Logic
need not coincide with the finitistic part of mathematics, but it should
presumably be found in the foundations. So Hilbert’s formalism
would indeed be turned upside down: formalism is in the founda-
tions, and Platonism above, whereas with Hilbert, constructivism is
in the foundations, and formalism above.

The fact that we are not prone to speak about models of deduc-
tion, and that this topic has not received much attention up to now, is
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in accordance with a formalistic understanding of deduction. When
we encounter different reconstructions of the same deductions, as
happens when we have sequents on the one hand and natural
deduction on the other hand, the usual inclination is not to speak
about one reconstruction being a model of the other, but both are
taken as alternative syntaxes.

Still, isn’t there something model-theoretical in passing from the
calculus of sequents to natural deduction? Couldn’t one take natural
deduction not just as an alternative syntax, but as a model giving
meaning to the sequent calculus?

And what about modelling natural deduction itself? We can code
natural-deduction proofs by typed lambda terms, according to the
Curry–Howard correspondence, but this seems to be rather a matter
of finding a suitable syntax to describe natural-deduction proofs,
though there are authors who speak about the typed lambda calculus
as providing a semantics of deductions.

Another kind of coding of natural deduction is obtained in cate-
gories, by proceeding as Lambek (see Lambek and Scott 1986, and
references therein). The possibility of this coding is not fortuitous: one
can prove rigorously that if we want to represent deductive systems set-
theoretically by identifying, in the style of intuitionism, a proposition
with deductions leading to it, or deductions starting from it, we must
end up with categories. In this set-theoretical representation, one can
also exhibit effectively the duality between composition of deductions,
i.e., cut, and the identity deduction. Composition leads us from the
deductive system to the representing category, and the identity
deduction brings us back. This representation, which is summarized in
the theorem that every small category is isomorphic to a concrete cat-
egory, i.e., a subcategory of the category of sets with functions, is an
elementary aspect of the Yoneda representation, and is related to some
aspects of Stone’s representation of lattice-orders and to Cayley’s
representation of monoids (see Do�sen 1998 or 1999; § 1.9).

We can always take as a model of a category the skeleton of this
category, i.e., the category obtained by identifying isomorphic
objects, but there are also more ‘‘dynamic’’ kinds of models.
(‘‘Dynamic’’ is often used in theoretical computer science and bor-
derline areas just as a commending expression. It means roughly
‘‘okay’’, while ‘‘static’’ is a pejorative expression.)

Lambek, who first realized in the sixties that categorial equality of
arrows coincides with proof-theoretical equivalence induced by nor-
malization, conjectured also that the same equivalence relation
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between deductions could be characterized by saying that the deduc-
tions have the same generality, by which he meant that by generalizing
the deductions, by diversifying schematic letters as much as possible,
while keeping the same rules, we shall end up with the same thing.
Lambek’s way of making precise the notion of generality of deductions
was not successful. At roughly the same time, under the influence of
Gentzen and Lambek, thematter was approachedwithmore success in
a geometrical vein by Eilenberg, Kelly and MacLane, in connection
with so-called coherence problems in category theory (see Eilenberg
and Kelly 1966, Kelly 1971). These are roughly decidability problems
for the commuting of various classes of diagrams, i.e., decidability
problems in an equational calculus of algebraic partial operations.

Lambek’s conjecture that generality characterizes Gentzenian
equivalence of deductions is not true in general; in particular, it is not
true for intuitionistic implication (as it was conclusively shown in Petrić
1997). But what appears from these studies of coherence problems is
that for categories interesting for logic, which codify deductions in
various fragments of intuitionistic and substructural logics, we can find
interesting geometrical models. That is, these categories can be faith-
fully embedded in some categories of geometrical morphisms. The
matter was rediscovered two decades later with the proof nets of linear
logic, and there is also a more recent rediscovery in Buss (1991) and
Carbone (1997). However, proof nets are officially presented as a new
kind of syntax, while Buss and Carbone disregard categories and don’t
deal explicitly with identity of deductions.

Lambek remarks in (1999) that this geometrization of algebraic
matters goes against the direction given to mathematics by Descartes,
but, concerning the matter at hand, this may nevertheless be the right
direction.

Do these geometrical models give a semantics of deduction? I
would refrain from answering the question. What is certain is that
they give models of deduction, and these models are appealing and
useful. To corroborate that, I shall present in the last section of this
talk a geometrical model for the general notion of adjunction. (This
model is explored in detail in Do�sen 1999.)

7. A GEOMETRICAL MODEL OF ADJUNCTION

Let us first briefly review one of the standard equational definitions of
adjunction. We have two categories A and B, and two functors, F
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from B to A and G from A to B. The former functor is called left
adjoint and the latter right adjoint. Next, we have a natural trans-
formation u in A, called the counit of the adjunction, whose com-
ponents are uA : FGA ‘ A for every object A of A, and a natural
transformation c in B, called the unit of the adjunction, whose
components are cB : B ‘ GFB for every object B of B. Finally, the
following triangular equalities must be satisfied:

uFB � FcB ¼ 1FB;

GuA � cGA ¼ 1GA:

In logical situations we should imagine that one of the adjoint
functors F and G is structural, and hence ‘‘invisible’’. Then the unit
and counit correspond to rules for introducing and eliminating a
connective.

Since all the assumptions in this definition are equational (the
equalities in question are the categorial axioms of composing with
identity arrows and the associativity of composition, the equalities of
the functoriality of F and G, the equalities of naturalness of u and c,
and the triangular equalities), we can take that we have here an
equational calculus. Out of the linguistic material of this calculus we
can build the free adjunction generated by a set of objects. The details
of this construction, as well as other technical details concerning
matters in this section, are exposed in Do�sen (1999).

To every arrow term in the free adjunction we assign a graph,
which is made of links between occurrences of F and G in the
source and target of the arrow term (these graphs should not be
confused with the graphs of arrows underlying a category). Identity
arrows and the components of the counit and unit have graphs like
the following:
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while given the graphs for g : B1 ‘ B2 and f : A1 ‘ A2 we obtain the
graphs of Fg and Gf as follows:

Composition of graphs is defined in the obvious manner; for example,
for the first triangular equality we have

It is clear that the composed graph on the left-hand side is equal to
the graph on the right-hand side.

One can give a reformulation of the notion of adjunction where
composition can be eliminated, in the style of cut elimination. For
this reformulation one should replace the families of arrows, i.e.,
families of components, making the counit and unit of the adjunction
by operations on arrows, as Gentzen replaced axioms like A^B ‘ A
by rules like

A;C ‘ C

A ^ B;C ‘ C

One can then obtain a composition-free normal form for arrow
terms, which is unique for every arrow.

With the help of this composition-free formulation of adjunction it
can be proved that for all arrow terms h1 and h2 we have h1 ¼ h2 in
the free adjunction iff the graphs of h1 and h2 are equal. This result is
of the kind called ‘‘coherence theorems’’ in category theory.

So graphs yield a very simple decision procedure for commuting of
diagrams in free adjunctions. They enable us also to reduce to normal
form arrow terms in the composition-free formulation without syn-
tactical reduction steps. Uniqueness of normal form can also be
demonstrated with the help of these graphs without involving any-
thing like the Church–Rosser property of some reduction steps.

Consider, in the free adjunction, the following two pairs of arrow
terms of the same type with different graphs:
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There are infinitely many such pairs. It can be shown that if we
extend the notion of adjunction by equating any such pair, we would
trivialize the notion. Namely, the resulting free adjunction would be a
preorder: any two arrow terms of the same type would be equal. This
means that all these equalities of arrows with different graphs are
equivalent with each other.

So the notion of adjunction is Post complete in some sense.
Graphs are not absolutely needed to demonstrate this result, but they
help to shorten calculations of a rather lengthy inductive argument.

Our coherence result for graphs in free adjunctions guarantees that
there are faithful functors from the categories involved in the free
adjunction to categories whose objects are finite sequences of alter-
nating F’s and G’s, and whose arrows are the graphs. The faithfulness
of these functors guarantees that we can speak of completeness with
respect to the graph models (soundness amounts to functoriality).
Our coherence result is exactly like a completeness theorem.

These categories of graphs are subcategories of categories of tan-
gles, which have played recently a prominent role in the theory of
quantum groups, in low-dimensional topology and in knot theory
(see Kassel 1995, Chapter XII; Kauffman and Lins 1994, and refer-
ences therein). Equality between our graphs covers planar ambient
isotopies of tangles without crossings.

Since every logical constant is characterized by an adjunction, we
can expect to find in the geometrical models of deductions involving
these constants various avatars of our graphs of adjunction.
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REINHARD KAHLE

A PROOF-THEORETIC VIEW OF NECESSITY

ABSTRACT. We give a reading of binary necessity statements of the form ‘‘/ is
necessary for w’’ in terms of proofs. This reading is based on the idea of interpreting
such statements as ‘‘Every proof of w uses /’’.

1. INTRODUCTION

In this paper, we give a proof-theoretic approach to necessity. From a
philosophical point of view, we even argue that the semantics of
necessity can be based on a proof-theoretic view.1 This is in direct
opposition to the usual model-theoretic view which interprets
necessity by the use of the well-known semantics of possible worlds.
However, we focus on necessity as a binary relation, in contrast to the
traditional view of necessity as a unary operator. As a binary relation,
it can be expressed by the schema

/ is necessary for w:

where / and w are sentences.2 The idea of the proof-theoretic ap-
proach is to read such a statement as

Every proof of w uses /:

Obviously, on an informal level, this reading should be very plausible.
From a technical point of view, there are two main difficulties: the
notion of use and the quantifier over proofs. We will propose that for
a meaningful necessity statement of this form, / must be chosen from
a list of what we call potential axioms. This list must be implicitly
given by the context of the necessity statement. With this assumption,
we can reduce the use of an arbitrary formula to the question of
whether an axiom is used.

In Section 2, we will give a short discussion of the possible inter-
pretations of binary necessity statements. In Section 3, we will present
the technical preliminaries needed for the formal proof-theoretic
reading, defined in Section 4. In Section 5, we will give examples
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which illustrates our definition at work. The final section is devoted
to a discussion of this approach.

2. UNDERSTANDING OF BINARY NECESSITY

The traditional treatment of necessity, even going back to Aristotle, is
the view of necessity as a modus of a proposition. With the rise of
modern logic, modal logic was chosen as an appropriate framework
to deal with necessity (cf. Lewis and Langford 1932). In particular,
because of the famous semantics of possible worlds (Kripke 1963),
this approach is considered to be the standard formalization of
necessity. There are several standard references for modal logic (e.g.,
Hughes and Cresswell 1968; Chellas 1980; Bull and Segerberg 1984).
For a historical survey of possible worlds semantics, we refer to
Copeland (2002). A comprehensive exposition of the technical aspects
of modal logic is given by Kracht (1999).

The most prominent problem of this approach is certainly the
logical omniscience. It is wellknown and welldiscussed (cf. e.g., Fagin
et al. 1995), but, by no means, solved. We would like to criticize the
modal approach from an even more general direction. It might be
adequate for a notion of logical necessity, but it seems to be unsuited
for the treatment of necessity in natural language use.

Our main claim is that necessity primarily occur as a binary rela-
tion. In principle, such a claim would require an empirical study of
natural language use, which we cannot provide here. But, let us
consider a typical example: Look at the sentence ‘‘I must hurry’’3

uttered when I am on my way to the train station. Obviously, there
‘‘exists’’ a possible world in which I do not hurry – but probably miss
the train. Therefore, normally, such a sentence has to be understood
as: ‘‘I must hurry to catch my train’’. Except for logical (and math-
ematical) statements, we think that necessity occurs in general in
binary statements where the succedent may be omitted. However, it
can be deduced from the context.

In fact, our analysis requires a pre-knowledge of the context in
which a necessity statement is given. The pre-knowledge determine,
so-to-speak, the search space for possible antecedents and succedents
of necessity statements. As for the example, we would like to stress
that necessity statements speak primarily about antecedents and
succedents in the future.

The usual modal approach to necessity provides an analysis of
binary necessity, by reading ‘‘/ is necessary for w’’ as ‘‘(ðw! /Þ’’.
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However, this reading suffers the problem of logical omniscience:
Every tautology is necessary for everything else; everything is nec-
essary for any contradiction.4

In particular, pure modal logic seems to be highly unsuitable for
the treatment of (our understanding of) necessity: the necessitation
rule /=(/ makes sense, if the formal system is restricted to capture
only necessity. However, the challenge is to speak of necessity in
connection with contingency. Nevertheless, that this is (to some extent)
possible in the modal framework by incorporating an operator for
the actual world, we follow another approach, where necessity is
reconstructed on the meta level of an axiom system for the actual
world.5

3. TECHNICAL PRELIMINARIES

As discussed in the previous section, our approach is based on a
deductive system. We will restrict ourselves to the propositional
case.6

Starting with a set of atomic formulae, the language should be
closed under the usual propositional connectives : (negation), ^
(conjunction), _ (disjunction) and! (implication). As metavariables
for arbitrary formulae we will use Greek letters /;w; . . ..

We need a standard derivability relation f/1; . . . ;/ng ‘ w
expressing that w can be derived from /1 to /n. It is not necessary to
fix a specific type of calculus, such as Hilbert-style calculus, sequent
calculus or natural deduction. However, it is required that the logical
axioms include a complete axiomatization of classical propositional
logic.

As metavariable for sets of axioms we use D. Dþ f/1; . . . ;/ng and
Dþ w have to be understood in the obvious way that /1 to /n or w
are added as additional axioms to D.
DEFINITION 1.

(1) D is consistent, iff there is a formula / such that D 6‘ /. D is
inconsistent, iff D is not consistent.

(2) / is independent with respect to D, iff both, Dþ / and Dþ :/,
are consistent.7

(3) Formulae /1; . . . ;/n exclude each other with respect to D, iff for
any i and j with 1 � i; j � n and i 6¼ j the system Dþ f/i;/jg is
inconsistent.
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Based on the last definition we introduce the crucial notion of variety
of alternatives:

DEFINITION 2.

(1) A set f/1; . . . ;/ng, n � 2, is called a set of alternatives with respect
to D, iff /1; . . . ;/n are independent with respect to D and exclude
each other with respect to D.8

(2) A set of sets

A ¼ ff/11; . . . ;/1m1
g; f/21; . . . ;/2m2

g; . . . ; f/n1; . . . ;/nmn
gg

is called a variety of alternatives with respect to D, iff the sets
f/k1; . . . ;/kmk

g are sets of alternatives with respect to D, for all
1 � k � n and any combination of single formulae of each set of
alternatives is consistent with D, i.e., Dþ f/1l1 ;/2l2 ; . . . ;/nlng is
consistent for arbitrary 1 � li � mi and 1 � i � n.

Finally, we can define the notions of potential proof and use of a
potential axiom for a given axiom system D and a variety of alter-
natives A:
DEFINITION 3. Let an axiom system D and a variety of alterna-
tives

A ¼ ff/11; . . . ;/1m1
g; f/21; . . . ;/2m2

g; . . . ; f/n1; . . . ;/nmn
gg

be given.

(1) The formulae /iji , for 1 � ji � mi and 1 � i � n, are called po-
tential axioms for D.

(2) A potential proof of a formula w is a proof of w in
Dþ f/1l1 ;/2l2 ; . . . ;/nlng for arbitrary l1; l2; . . . ; ln.

(3) If B is a proof of w in Dþ f/1l1 ;/2l2 ; . . . ;/nlng and w is not
provable in Dþ f/1l1 ;/2l2 ; . . . ;/k�1lk�1 ;/kþ1lkþ1 ; . . . ;/nlng, we say
that /klk

is used in the proof B.

Remark 4. In the last definition of the use of a potential axiom we
do not refer to any appearance of / in B, but argue from a meta-
theoretical point of view: If w is not provable in the absence of /, but
in the presence of /, / was ‘‘used’’. This allows us to give a definition
of use which does not depend on the underlying calculus (and it
should contain every reasonable definition of use of an axiom in a
proof given for a particular calculus). But, now the question arises,
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how one can actually prove that / was used, given a potential proof
of w where / is one of the potential axioms. We have to show that w
is not provable in D in the presence of the potential axioms minus /.
This can be done by use of a counter-model where the potential
axioms without / hold and, in addition, :w. But we would like to
stress that this use of a model-theoretic argument does not change the
proof-theoretic character of our approach. Here, model theory is used
only as a tool.

4. THE PROOF-THEORETIC READING

In the following we presuppose that a consistent axiom system D is
given. Then, for the analysis of a statement of the form

ð?Þ ‘‘/ is necessary for w’’

we assume the following:

(1) / and w are adequately formalizable in the language of the axiom
system D.

(2) w is independent of D.
(3) There exists a variety of alternatives with respect to D:

A ¼ ff/11; . . . ;/1m1
g; f/21; . . . ;/2m2

g; . . . ; f/n1; . . . ;/nmn
gg

such that / is one /klk
, 1 � k � n, 1 � lk � mk.

In principle, in the second condition we should also demand that / is
independent of D. However, this follows from the third point, since
all formulae of a set of alternatives in a variety have to be indepen-
dent of D, and / has to belong to them.

With these conditions we can define:

DEFINITION 5. The necessity statement ð?Þ holds, iff
(1) there is a potential proof of w and
(2) every potential proof of w uses /.

The first condition is needed to avoid pathological cases, since
otherwise the quantification over every potential proof would be
vacuous.9
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Let us briefly discuss the three assumption we have made. The first
one is trivial. For the independence of / and w, we argue that in the
case of formulae / and/or w which are already proven (or disproven)
language offers other, more adequate statements:

(1) / must usually be a statement about the future and therefore
independent. Otherwise, if D ‘ /, one would use a necessity
statement in the past tense: / was necessary for w.10 If D ‘ :/
holds, the necessity statement has a subjunctive, or even a
counterfactual meaning: ‘‘/ would have been necessary for w’’ or
‘‘If / were the case, it would be necessary for w’’.11

(2) If w is already derivable from D, there is no need for a necessity
statement with respect to a antecedence in the future: the claim ‘‘/
is necessary for w’’ is rejected by the argument that w is already
the case. This argument, of course, does not apply to necessity
statements in the past tense. But, such statements must be dis-
tinguished from the ones under consideration here (nevertheless
that there should be an analysis along the lines we present in this
paper).12

(3) If D ‘ :w, it is already to late for a necessity statement; there is no
possibility of proving the succedent in any way. Here, one could at
best think of a statement in the subjunctive mood: ‘‘/ would be
necessary for w’’, probably understood in a counterfactual con-
text: ‘‘/ would be necessary for w, if something would not have
been the case.’’13

The reasons for the conditions on the variety of alternatives, stated in
Definition 2, are the following:

(4) Clearly, there should be at least two alternatives in a set of
alternatives. Often, a set of alternatives will consist only of a
formula and its negation. However, the main example, presented
below, illustrates a case where we can use more alternatives, cf.
Remark 6 below.

(5) The independence of the elements of a set of alternatives is re-
quired to ensure that the antecedence of a necessity statement is
independent, cf. the discussion above, item (1).

(6) The condition that the formulae in a set of alternatives exclude
each other ensures that there is no overlap: If two potential axi-
oms / and w did not exclude each other, there could be different
potential proofs for a formula v of which one uses / and another
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uses w, i.e., neither / nor w would be necessary according to our
reading.14

(7) The consistency of combinations of elements of different sets of
alternatives exclude potential proofs with an inconsistent set of
potential axioms.

Of course, the variety of alternatives is the main parameter of our
approach. This parameter is not uniquely determined. Probably, most
of the disagreements about necessity statements can be explained with
respect to disagreements about the variety of alternatives.15

5. AN EXAMPLE

As an example illustrating our approach, let us consider the following
ranking of a soccer group before the last round.

In the last round, the following matches will be played:

A against D;

B against C:

We assume the reader is familiar with the usual rules for soccer
rankings.16 Nowwe investigate the following two necessity statements:

(a) ‘‘To win the group, C must win against B’’.
(b) ‘‘To finish second, C must win against B’’.

Let us give an informal analysis. For that, we would have to rephrase
these statements according to our definition as:

– Every potential proof of ‘‘Cwins the group’’ uses ‘‘Cwins againstB’’.
– Every potential proof of ‘‘C finishes second’’ uses ‘‘Cwins againstB’’.

We have to use potential proofs because neither ‘‘C wins the group’’
nor ‘‘C finishes second’’ is provable in the given situation. But it should

Team Points Goals Goal difference

A 4 2:0 +2

B 4 2:1 +1

C 3 5:2 +3

D 0 1:7 )6
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be obvious what the additional, potential axioms, which are allowed to
be used in the potential proofs, are. The possible results of the
remaining matches: ‘‘Awins againstD’’, ‘‘A andD draw’’ and ‘‘A loses
toD’’ build a set of alternatives.17 So, the set of varieties is given by the
two sets of alternatives of the two matches.

Remark 6. This example shows why we allow more then two
alternatives. To consider only ‘‘win’’ and ‘‘not win’’ is not adequate for
soccer results, which allows for two forms of ‘‘not win’’. In addition,
we see from this example why a set of alternatives does not need to be
logically complete. There is the forth alternative that the match will
not be played at all.18 But it is clear that the usual reading of the
necessity statements will not consider this additional alternative.

For our reading of the necessity statement we have first to check
the assumptions we made. Obviously, the rules of soccer and the
given group can be formalized within an axiomatic framework.19

It is easy to observe that the last matches still allow B to finish first,
second, or third. Therefore the succedents of both statements are
independent. The independence of the potential axioms in the variety
of alternatives follows from the fact that the gameswere not played yet.

Now, let us check whether (a) and/or (b) holds with respect to our
reading of necessity.

For (a) it is indeed the case that every potential proof of ‘‘C wins
the group’’ uses the potential axiom ‘‘C wins against B’’. First, one
sees immediately that in the case of the two alternatives where C
draws or loses to B, B will clearly stay ahead of C, and therefore, C
cannot be the winner of the group. To complete the argument that (a)
is correct, we must, however, check that there is at least one potential
proof of ‘‘C wins the group’’ using ‘‘C wins against B’’. But that is,
indeed, the case (e.g., if A draws against D).

If we turn to (b), it could be tempting to use an argument along
the same lines, i.e., to argue that in both other alternatives B will stay
ahead of C, and using the fact that B is second. In addition, there is a
proof of ‘‘C finishes second’’ which uses ‘‘C wins against B’’ (if A
wins against D). But, all proofs have to use this antecedent. And
there is a proof of ‘‘C finishes second’’ which uses, instead, ‘‘C ties
against B’’ – if A loses to D. In this case, C and A will both have four
points, but the goal difference of C is better than that of A. Thus, (b)
is not correct.

The example also allows for an illustration of the assumptions we
made for the definitions.
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(1) As claimed earlier, the antecedence of a necessity statement
should be one about the future. If we consider, for example,
results of matches already played, we would use sentences like
‘‘It was necessary that C won against D for C to win the
group.’’ or ‘‘It would have been necessary for D to win against B
to win the group’’.20

(2) A statement of the form ‘‘To stay ahead of D, A must win
against D’’ would be rejected, since it is already provable that
A will stay ahead of D in any case, i.e., independent of the
results of the remaining matches. In fact, we could consider
this as a limit case of our analysis: if the succedent is already
provable, there is obviously a (potential) proof not using the
antecedence. Therefore, the necessity statement is trivially
false.

(3) If the succedent is false, a necessity statement would be mean-
ingless: ‘‘To win the group, D must win against A’’ is rejected
since D cannot win the group in any case. It is rejected in a
strong sense as meaningless, since its negation would not be
considered as true, either: ‘‘It is not the case that to win the
group, D must win against A’’. Both statements are meaning-
less, with the justification that D can not win the group no
matter what.

(4/5) That there are at least two alternatives and that they should
independent, is clear from the general considerations.

(6) For the sixth condition, let us consider another example: the
statement ‘‘It is necessary that C does not lose to B to finish
second’’ should be a true necessity statement. However, if we
reconstruct it in a context with a set of alternatives containing
‘‘C does not lose toB’’ and ‘‘C draws againstB’’, we would find a
proof of C finishes second without using the first alternative. Of
course, this would be rejected as an argument against the
necessity statement, since the draw is included as a possibility in
the first alternative. Formally, we ensure this by the requirement
that the elements of a set of alternatives exclude each other.

(7) The consistence of the combinations avoids varieties of alter-
natives like the one where we have in one set ‘‘B wins’’ and in
another ‘‘C wins’’. Since B will play against C a combination of
these two potential axioms would result in a contradiction and
we would have potential proofs for every formula without the
use of any other formula. This, clearly, would result in contra-
intuitive consequences.
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6. DISCUSSION

6.1 The Variety of Alternatives

Obviously, the appropriate choice of the variety of alternatives is
highly relevant for our approach. This is a question which depends on
the context of the statement. We do not claim that there is any
general method to fix a variety of alternatives. However, for the given
example, the choice seems to be clear. Given a background theory,
the question of finding an appropriate definition of the variety of
alternatives is more a consequence than a presupposition of our
analysis. Of course, the antecedence has to show up in a set of
alternatives. In the easiest case, it just comes together with its nega-
tion. However, the other possible axioms might be able to be found
by searching for a potential proof of the succedent. With this
observation, we can even link the analysis of necessity statements to
the field of proof search and the general field of abduction. This ap-
plies in particular, if we put the background theory itself in question:
we do not search for a proof of the succedent only, but ask under
which circumstances the necessity statement would be true.21 Besides
the antecedence, other formulae might be needed to prove the suc-
cedent. These are then assumed to be part of the background theory.

6.2. Possible Worlds Semantics Revisited

The variety of alternatives can be seen as a formal counterpart of the
variety of possible worlds needed in the standard semantic approach
to necessity. Given an axiom system, the combinations of it with the
potential axioms from the sets of alternatives should give – at least,
partial – axiomatizations of the different possible worlds. Then, the
reading of ‘‘/ is necessary for w’’ as ‘‘w implies / in all possible
worlds’’ will probably coincide with our reading. From this per-
spective, the variety of alternatives focus only on the formulae which
could be considered in necessity statements. Therefore, the problem
of logical omniscience is rather ‘‘defined away’’ than directly solved:
tautologies will not appear as elements of a variety of alternatives.
Also, the consequence that everything is necessary for a contradiction
is excluded by the requirement of at least one possible proof of the
succedent, which means that there is at least one possible world in
which it holds. We claim that this is not a bad solution, since it draws
its support from the plausible idea of the use of a formula.
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As discussed above, a proof-theoretic approach can even give some
guidance on how to find the (or one) appropriate variety of alterna-
tives. In contrast, possible world semantics itself does not provide any
information on how to determine the appropriate variety of possible
worlds.

6.3. Modal Logic

Modal logic, as an axiomatic counterpart of possible worlds seman-
tics, has its limitations in relating contingency and necessity. Even if
we add an operator to distinguish the contingency of a formula,
necessity is stated only for given axioms and is then closed under
logical and necessity operations. This is perfect for a notion of logical
necessity. However, the proof-theoretic approach gives a direct rela-
tion of contingent formulae and its role in binary necessity statements
as used in natural languages. The price we pay for this is that necessity
statements must be read as meta-statements. Obviously, in our read-
ing, they are not incorporated into the original axiom system. How-
ever, we consider this rather as a feature than as a ‘‘bug’’ of the
analysis.

6.4. Necessary Condition

There is a relation of our approach to the usual definition of a nec-
essary condition. In fact, from our definition it follows that, if / is
necessary for /, :/ implies :w (or w implies /). (It holds w _ :w.
Since every proof of w uses /, w can hold only in the presence of /.
Hence, / _ :w, i.e., :/! :w.)

However, the converse can be established only, if we take the
variety of alternatives into account. Otherwise, on the one hand, we
would have the problem of logical omniscience (tautologies would be
necessary for everything). On the other hand, we might need extra
potential axioms to prove the required implication.

As for the possible world semantics, we think that it is possible to
define binary necessity in terms of necessary condition using the variety
of alternatives. This would probably lead to an equivalent character-
ization. But, as for the possible world semantics, we claim that the
approach given here is closer to the actual reasoning we use to justify
(binary) necessity statements. Therefore, the given approach distin-
guishes itself as the primary definition. The characterization via neces-
sary condition (as well as via possible worlds) is in this sense secondary
and is rather a corollary about necessity than a definition of it.22
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6.5. Intensionality in General

Necessity is paradigmatic for an intensional phenomena. Intension-
ality can be characterized as being incompatible with substitution of
logical equivalent terms or formulas. Therefore, a standard set-the-
oretic semantics which is, by definition, extensional, fails in an
intensional context. Such as for necessity, we claim that intensional
phenomena can be explained by the use of additional information
given within a proof-theoretic framework. One motivation for the
proof-theoretic treatment can be found in completeness. As long as
we have a complete axiomatization of a situation, models and proofs
are of the same value with respect to validity and provability. But we
have more structure on the proof-theoretic side. For instance, a
statement can have several proofs, but should have only one truth
value. This additional structure seems to be crucial for the analysis of
intensional phenomena. This should be directly applicable to the
notion of relevance. Here, the well-developed field of relevance logic
(cf. e.g., Anderson and Belnap 1975; Anderson et al. 1992), investi-
gates mainly the question of relevance as a property of an axiom
system as a whole. The question whether ‘‘/ is relevant for w’’ could
probably answered in a way similar to the way in which we treated
necessity.

For the case of belief revision, syntax based approaches can be seen
in the line of a proof-theoretic view (cf. Nebel 1992; Hansson 1998).
From our point of view, they still often involve too many model-
theoretic components, cf. e.g., the case of safe contraction on belief
bases (Fuhrmann 1991; Nayak 1994). An example of a closer proof-
theoretic view is given in (Kahle 2002). This approach is actually very
close to the framework of Truth maintenance systems (cf. Doyle 1979;
de Kleer 1986) proposed in the field of artificial intelligence (Russell
and Norvig 1995). Indeed, in this field the advantage of proof-
theoretic components over purely model-theoretic methods is clearly
realized, cf. e.g., the problems of model update (or interpretation up-
date) for deductive databases (or knowledge bases), (cf. Alferes et al.,
2000).

As the most promising alternative to our approach we consider
Moschovakis’s recursion-theoretic approach, reading Frege’s notion
of sense and denotation as algorithm and value (Moschovakis 1994).
We would link, alternatively, the sense of a declarative sentence,
which Frege characterizes as the mode of presentation (Frege 1892;
Frege 1952), with the proofs of it.
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NOTES

1 The term‘‘proof-theoretic’’ might be a little bit misleading, since we do not use any
specific technique from (mathematical or structural) proof theory. A more modest
term could be ‘‘proof-based’’. However, in differentiation from the modal approach

and possible worlds semantics we think that the term ‘‘proof-theoretic’’ is justified.
From a broader point of view, this paper also contributes to the general program of
‘‘proof-theoretic semantics’’ to which this volume is devoted.
2 We avoid here the term propositions since propositions involve often a reference to

possible worlds, at least to certain semantical presuppositions (cf. e.g., Anderson
1995).
3 At the conference Modality in Contemporary English, Verona, 6–8 September

2001, (Facchinetti et al., 2003), we learned that ‘‘must’’ is being increasingly replaced
by ‘‘have to’’ in contemporary English. However, here we are not focusing on this
aspect of natural language use.
4 See also the discussion about necessary condition at the end of the paper.
5 A criticism of possible worlds semantics is given from a different perspective by
Forster (200x).
6 There are no principle reasons as to why the approach could not be extended to

first or even second order logic. However, from a technical point of view, it would
require a clear understanding of the independence of axioms. This is not obvious, if
we think of instances with respect to their generalizations.
7 With this definition independency coincides with a natural understanding of
possibility. That means, in this case we could also say that / is possible with respect to
D.
8 We do not demand that a set of alternatives is complete, i.e., that D proves
/1 _ . . . _ /n. The reason for this is explained below in Remark 6.
9 Therefore, we have already avoided the consequence that every single formula

would be necessary for a contradictory statement.
10 Exceptions are the mathematical necessity statement. However, in mathematics
there is a well-defined notion of the necessary condition, as A is a necessary condition
for B, if B implies A.
11 We do not discuss here whether these two sentences might express the same thing.
12 One can think of incorporating an explicit temporal structure into the axioms. In
fact, our presupposition that potential axioms can become true only in the future,

already contains such a temporal aspect.
13 For an interesting analysis of counterfactuals which criticize the standard modal
approach (cf. Wehmeier 200x).
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14 We are not sure whether this condition is absolutely necessary. There might be
cases where one would like to allow such overlaps. But so far, we have not found
any.
15 Cf. also the discussion below in Section 6.
16 Three points for a win, one for a draw, goal difference as first tie-breaker.
17 For our example we can restrict ourselves to the ‘‘qualitative’’ results: win, tie,
lose. The score does not matter.
18 From another perspective, the disjunction is not complete since A has neither won,
drawn, or lost ‘‘now’’, when the game has not yet been played.
19 We have to ensure that this axiomatization can be expressed in propositional logic.

In the example, this is probably not the most convenient way of formalization.
However, it can be done by the use of appropriate propositional variables such as
p1 � ‘‘A wins against D’’, p2 � ‘‘A has now 7 points’’, p3 � ‘‘A will have 10 points’’

and axioms of the form p1 ^ p2 ! p3.
20 The first statement should be considered as true, however, the truth of the second
one is debatable.
21 We are convinced by the fact that in a rigid reading of necessity – in particular, in

terms of possible worlds – nearly every non-logical necessity statement uttered in a
natural language conversation will turn out to be false.
22 In particular, contra (Stalnaker 1995), we deny that possible worlds are the

appropriate framework for articulating and sharpening the problem of the nature
of modal truth, especially if it is considered as a presuppostion to speak about
modalities.
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GABRIELE USBERTI

TOWARDS A SEMANTICS BASED ON THE NOTION

OF JUSTIFICATION

ABSTRACT. Suppose we want to take seriously the neoverificationist idea that an
intuitionistic theory of meaning can be generalized in such a way as to be applicable
not only to mathematical but also to empirical sentences. The paper explores some

consequences of this attitude and takes some steps towards the realization of this
program. The general idea is to develop a meaning theory, and consequently a
formal semantics, based on the idea that knowing the meaning of a sentence is
tantamount to having a criterion for establishing what is a justification for it. Sec-

tion 1 motivates a requirement of epistemic transparency imposed onto justifications
conceived as mental states. In Section 2, the formal notion of justification for an
atomic formula is defined, in terms of the notion of cognitive state. In Section 3, the

definition is extended to logically complex formulas. In Section 4, the notion of
truth-ground is introduced and is used to give a definition of logical validity.

1. EPISTEMIC TRANSPARENCY

The gist of Dummett’s anti-realistic argument is that if we equate the
meaning of a sentence with its truth-conditions, and we conceive,
realistically, truth as transcending our recognitional capacities, we are
not able to give an account of our knowledge of the meaning of
certain sentences satisfying a manifestability requirement, according
to which

[t]here must be an observable difference between the behaviour or capacities of
someone who is said to have that knowledge and someone who is said to lack it

(Dummett 1975, p. 7).

Suppose now you are a mentalist, so that you are naturally inclined
to conceive knowledge of meaning as a sort of mental state, and
that you think that behavior is no criterion of knowledge (though it
can of course provide evidence for the possession of knowledge); in
that case you will not be prepared to accept the manifestability
requirement, since you are willing to admit that someone could be
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in the mental state commonly called ‘‘knowing the meaning of A’’
even if he is not capable of exhibiting an appropriate behavior,
perhaps because of some neurophysiological impairment.1But sup-
pose also that you think that, to be justified in attributing a mental
state to someone, you must satisfy a specifiability requirement,
according to which you must be capable of specifying that state in
terms of certain algorithms implemented in some way in his cog-
nitive structure and of a finite amount of information. Under these
conditions the anti-realistic conclusion of Dummett’s argument
follows, if it follows in the original argument;2 for, if we equate the
meaning of a sentence with its truth-conditions, and we conceive,
realistically, truth as transcending our recognitional capacities, then
we are not able to give an account of our knowledge of the meaning
of certain sentences that satisfies the specifiability requirement: in
the case of an undecidable true sentence of the form 8xA it seems
impossible to see how knowledge of its truth condition, i.e.,
knowledge that infinitely many facts Aðt1Þ;Aðt2Þ; . . . subsist, could
be specifiable as a mental state.

These remarks point out what is problematic in the truth-condi-
tional theories of meaning: Knowledge of meaning is explained in
term of a notion – truth – that is recognition transcendent. It is
therefore natural to require that, if a theory is to provide a good
account of knowledge of meaning, the key notion in terms of which it
explains the meaning of sentences is not recognition transcendent, but
recognition immanent. The problem is how to construe exactly this
requirement of epistemic immanence. Let me distinguish between two
interpretations: according to the first, or weak one, the key property
must be such that it is atemporally possible for an appropriately
idealized subject to recognize that an arbitrary sentence has this
property, if it has it, and that it does not have this property, if it does
not have it; according to the second, or strong one, the key property
must be such that such a recognition is presently possible. What
‘‘atemporally possible’’ means is explained by Prawitz in the fol-
lowing passage, in which he speaks about the possibility not of rec-
ognition but of proof:

[A] mathematical sentence is true if there exists a proof of it, in a tenseless or abstract

sense of exists [. . .]. Or we may express the same idea by saying that a sentence A is
true if ‘we can prove A’ [. . .]. That we can prove A is not to be understood as meaning
that it is within our practical reach to prove A, but only that it is possible in principle

to prove A [. . .]. Similarly, that there exists a proof of A does not mean that a proof
of A will be constructed but only that the possibility is there for constructing a proof
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of A. [. . .] I see no objection to conceiving the possibility that there is a specific
method for curing cancer, which we may discover one day, but which may also
remain undiscovered (Prawitz 1987, pp. 153–154).

On the other hand, ‘‘presently possible’’ alludes to a possibility which
subsists or not according to our having or not having presently a
procedure, or an algorithm, at our disposal, which is recognized as
being such that its application to an arbitrary sentence would give as
a result ‘‘Yes’’ if the sentence has the key property, ‘‘No’’ if it doesn’t.

All theories using assertibility as the key notion adopt the weak
interpretation, for it would be silly to say that even an idealized
subject has presently at its disposal an algorithm answering ‘‘Yes’’ to
exactly the assertible sentences. But if we interpret the immanence
requirement in this way, it is not clear in which sense we can give a
good account of knowledge of meaning. The possibility to which
Prawitz alludes is not characterized as an epistemic state, but as
merely factual accessibility to an epistemic state, so that its subsis-
tence is completely independent of the subject’s cognitive states; as a
consequence it seems impossible to specify a cognitive state as the one
of which knowledge of the meaning of a specific sentence consists.

On the contrary, if we interpret the immanence requirement in the
strong way, we require that a subject who knows the meaning of A
has an algorithm at his disposal, and therefore be in a specific mental
state. Of course, in this case, we cannot choose the assertibility
property as the key notion; but we can choose the relation ‘‘x is a
canonical proof of A’’ (when A is a mathematical sentence). From
this point of view, to know the meaning of a (mathematical) sentence
A is tantamount to having a decision procedure for the relation ‘‘x is
a canonical proof of A’’.

One might wonder whether it is intuitively plausible to require that
such a relation is decidable. Prawitz has argued, for instance in Prawitz
(1977), that it is not. The reason, as far as I can see, is the following:

In the cases when A is an implication or a universal sentence [. . .] we must require not
only a construction or description of an appropriate procedure but also an under-

standing of this procedure (p. 27)

in the sense that

it cannot be enough that the person is just able to name or describe an operation
which in fact always yields a certain kind of result when applied to objects within its

domain; [. . .] he must also understand that the described procedure, when applied to
an object within its domain, always yields a result of the stipulated kind (Ibid.);

but
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it is doubtful in what sense, if any, one could decide the question whether this
condition obtains in a certain situation (p. 29).

This reason is in fact the statement of a question, and it seems to me
that there is an answer. If we reflect that the notion of proof at stake
here is from the start an intuitive notion, not the notion of proof of
some formal system, the sense in which one can decide the question
whether something is a canonical proof or not becomes clear if we
adopt the intuitionistic idea that proofs

are mental constructions, that is, objects of thought not merely in the sense that they
are thought about, but in the sense that, for them, esse est concipi. They exist only in
virtue of ourmathematical activity, which consists inmental operations, and have only

those properties which they can be recognized by us as having (Dummett 1977, p. 7).

Let me restate this idea in the form of a requirement of epistemic
transparency imposed onto proofs conceived as mental constructions:

(1) Epistemic Transparency, A mental construction is not a proof
of A unless it is recognized as such by an idealized knowing
subject.

I take this principle as a way of making explicit an essential char-
acteristic of the intuitive notion of proof, or better: of one intuitive
notion of proof. A basic intuition we have about proofs in this sense
is that a proof of A is essentially what is recognized as such by an
idealized knowing subject: there is not a point of view from which a
construction can be judged to be a proof of A in spite of the fact that
no idealized subject who is capable of recognizing it is aware of its
being a proof of A, or from which a construction can be judged not to
be a proof of A in spite of the fact that an idealized subject who is
capable of recognizing it believes that it is. To be a proof of A is to be
conceived as such by an idealized subject. Of course it may happen
that an empirical subject mistakes something for a proof, or that he
doesn’t realize that something is a proof; but this is a consequence of
limitations of memory, attention, and so on, from which we abstract
when we appeal to an idealized subject.
Let me emphasize an essential point. Someone might deny that epi-
stemic transparency is a characteristic of the intuitive notion of proof,
or even of one intuitive notion; he might maintain that it is a char-
acteristic of the notion of proof as the anti-realist conceives it; and –
he might continue – it is scarcely plausible to call such a notion
‘‘intuitive’’; for example, it seems to be in perfect agreement with
intuition to say that something is a proof of A even if a subject who is
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considering it does not realize that it is. My answer is, first, that
intuition, when we consult it about fundamental notions, does not
give us as definite answers as the objector implies. What is, for
instance, the ‘right’ notion of possibility, of cause, of set, of proba-
bility, or of truth? If there were a unique answer there would simply
be no space for as many philosophical discussions as there still are.
Often, the only thing a philosophical discussion can do is bring to
light the fact that what seemed to be one intuitive notion is in fact a
cluster of notions. Sometimes it is sufficient to make them explicit in
order to extricate notions that are simply different; it is the case of
possibility: there is not ‘the’ intuitive notion of possibility, but there
is logical possibility, deontic possibility, epistemic possibility, etc.;
and none is ‘more intuitive’ than the others. Sometimes things are
more complicated; in the case of truth, for example, after having
extricated the metaphysical notion from the epistemic one we have to
do with two notions that are not simply different: they vie for the role
of the ‘correct’ notion of truth, or for the role of fundamental notion
of the theory of meaning. In such cases (and I hold that the case of
the notion of justification is similar), it is not by appealing to intuition
that we can settle the question; what is decisive are considerations
concerning the nature of the theories we can build on the basis of
each notion, their coherence, their explicative power, and so on. In
this connection it is not unacceptable, nor surprising, that some no-
tion is both intuitive and congenial to a specific philosophical con-
ception. What is important is, on the one hand, that the notion is
intelligible to anyone who has different philosophical views, and, on
the other hand, that the choice of it as a fundamental notion has clear
motivations. In the present case, the choice of an epistemically
transparent notion of proof has a very clear reason: it is the only
choice compatible with the idea that knowing the sense of A is tan-
tamount to having a criterion for establishing whether something is
or is not a proof of A. For, if we admit that in some possible situation
a construction is a proof of A, in spite of the fact that an (idealized)
subject s is not aware of it, or that a construction is not a proof of A,
in spite of the fact that s believes that it is, then we must also admit
that s has not a criterion for establishing whether a construction is a
proof of A, and we cannot equate his knowledge of the meaning of A
to having such a criterion. On the other hand, the notion of an
epistemically transparent proof is perfectly intelligible to the realist: it
is the internalist notion of proof. In fact, I do not see how even a
platonist might dispense with such a notion: even if mathematics is an
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activity of discovery of a realm of entities an sich subsisting, the
mathematician has to be absolutely confident in the reliability of
proofs, the very tools by means of which he discovers mathematical
truths, and there seems to be no other way of obtaining such a
confidence than postulating the epistemic transparency of proofs.

2. JUSTIFICATIONS FOR ATOMIC SENTENCES

When we try to extend a verificationist theory of meaning to
empirical sentences, the key notion of the theory must be non-factive
and defeasible; it will therefore be more appropriate to use for such a
key notion the word ‘‘justification’’ instead of ‘‘proof’’ or ‘‘verifica-
tion’’. Justifications are defeasible in the sense that a justification for a
sentence A can cease to be a justification for A as new information is
received; they are non-factive in the sense that it may happen that a
subject s has a justification to believe a sentence A that in fact is,
intuitively, not true. I will call here non-conclusiveness the logical
disjunction of defeasibility and non-factivity. That most empirical
sentences can be justified only in a non-conclusive way will be as-
sumed here without discussion.

An important consequence of the use of the non-conclusive notion
of justification as the key notion of the theory of meaning is that the
verificationist thesis according to which

(2) The truth of a mathematical proposition A can be defined as the
existence of a (direct) verification of A

cannot be generalized in the obvious way resulting in the thesis that
the truth of an empirical propositionA can be equated to the existence
of a justification for A; the reason is simple: since the notion of jus-
tification is non-conclusive, if the truth of A were defined as the
existence of a justification for A, we would have that some sentences
which are true on one occasion are not true on another occasion3 – a
very counterintuitive consequence. This fact is considered as a serious
difficulty by any verificationist who makes the further assumption that

(3) The meaning of a sentence is given by its (direct) verifiability
conditions.

The reason is the following. If we make this assumption, and put it
together with (2), we can immediately derive that

(4) The meaning of a sentence is given by its truth-conditions;
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andmany verificationists are willing to accept this familiar principle as
expressing an essential link betweenmeaning and truth – a link that also
realists postulate, the only difference being theway truth is understood.

But this link is broken if we replace ‘‘verify’’ with ‘‘justify’’, since
the verificationist thesis (2) cannot be generalized to empirical
propositions.

I will call ‘‘verificationist’’ whoever believes that it is possible and
interesting to develop a theory of the meaning of mathematical
propositions based on the notion of verification, and ‘‘justification-
ist’’ whoever believes that it is possible and interesting to develop a
more general theory of the meaning of mathematical and empirical
propositions based on the notion of justification. Suppose now that a
verificationist already has some reasons not to subscribe to (3), for
example of the kind illustrated in the first section; then the link be-
tween meaning and truth would be broken from the start (namely
also in the more restricted domain of mathematical sentences), and
there would be no new problem for the justificationist project.

If we renounce the link between meaning and truth from the start,
how can we conceive knowledge of the meaning of an empirical
sentence A? My suggestion is to equate it with the capacity to rec-
ognize a canonical justification for A, i.e., to decide the relation ‘‘x is
a canonical justification for A’’. Of course this idea remains empty
unless I can define a plausible theoretical notion of canonical justi-
fication for A which turns out to be epistemically transparent, and
therefore decidable. This is what I shall try to do in what follows. The
strategy I shall adopt consists in inductively defining the set of jus-
tifications for A, and in isolating the set of canonical justifications by
means of a decidable property.

The problem of atomic sentences has been ignored since Heyting’s
inductive definition of the notion ‘‘x is a proof of A’’, as far as I know;
but Heyting had a good reason to neglect it: he was exclusively inter-
ested in a theory of the meaning of the logical constants; while a con-
temporary verificationist or justificationist has a more ambitious
program: he aims at an explanation for the meaning of all (mathe-
matical or empirical) sentences, so the problem cannot be avoided.
Obviously, ananswerof the sort: ‘‘A justification foranatomic sentence
iswhatever authorizes us to believeA’’ would be unexplanatory: it is the
intuitive relation of warranting that we are trying to explain, at least
partially, through the notion of justification, not the other way round.

My idea is to define the notion of justification for an atomic
sentence in terms of two other notions: the notion of authorization to
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use a name to refer to a given entity, and the notion of authorization
to concatenate a predicate with a name.4

I will give an idea of what an authorization to use the name n to
refer to a given object is through an example. Consider the name
‘‘Chomsky’’. According to the model for the sense of a proper name
sketched in Dummett (1973), to know the sense of this name is to
have a criterion of identification of an object as the referent of the
name. The problem is how to explain the notion of an object’s being
‘given’ or ‘presented’ to a subject. Dummett explains it by
appealing to the general assumption that there is a ‘fundamental’
way of presenting physical objects, i.e., demonstrative identification;
as a consequence, the understanding of the sense of a name amounts
to an ability to determine the truth-value – more properly, to know
what would determine the truth-value – of what he calls a ‘‘recog-
nition statement’’: a sentence of the form ‘‘This is X’’, where ‘‘X’’ is
the name in question and the ‘‘is’’ occurs as the sign of identity. I find
this explanation inadequate for two reasons. First, the assumption
that there is some privileged way in which persons, for instance, are
given to us seems quite unplausible: we can know a person through
perception but also through testimony, or by interpreting the traces
of some of her/his actions (a footprint, a book, a statue, and so on),
or by locating her/him within a net of parental relations some of
whose elements we already know, and so on; and the same is true of a
great variety of objects. Second, the reason why Dummett considers
recognition sentences as basic is simply that they are construed by
him as assuring recognition; in other terms, the ability to determine
the truth-value of the recognition statement ‘‘This is Chomsky’’ can
be plausibly suggested as an explanation of the knowledge of the
meaning of the name ‘‘Chomsky’’ only if the statement is interpreted
as expressing the identity of an unknown entity named ‘‘Chomsky’’
with the known man that is being indicated, and which is known just
because he is perceptively present. But it is not always the case that a
statement of the form ‘‘This is X’’ can be interpreted in this way.
Suppose, for example, that both I and my audience know of a certain
boy we have never met, that he got lost in the park, that his name is
‘‘John’’, that he is four years old, that he wears a red shirt, and that
he is fair-haired. Suppose I walk through the park and I meet a boy
who corresponds to what I know about him; in this situation I am
entitled to say to a friend of mine who is walking with me: ‘‘This is
John’’. It is true that I use a sentence of the form ‘‘This is X’’’, but I
use it in a completely different way from the one assumed by
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Dummett as normal when he speaks of recognition statements: what
we know is the referent of ‘‘John’’, and the referent of ‘‘this’’ becomes
known only by virtue of his identity with the referent of ‘‘John’’. We
seem therefore to lack a non-circular criterion for distinguishing the
‘good’ uses of the recognition statements.

It may seem that, if we withdraw the assumption of a ‘funda-
mental’ way of identifying physical objects, the notion of authori-
zation to use a name to refer to a given entity becomes irremediably
vague, subjective and context-dependent, so that it cannot be used to
explain the sense of names. I think this is not the case. What is
necessary is to extract from the intuitive notion of context the aspects
that are relevant in determining a subject’s being or not being
authorized to use a name. To this effect I will introduce the notion of
cognitive state.

For the purposes of the present paper I will identify an (atomic)
cognitive state with a triple c ¼ he; ht; fti; ii, where e is a specification,
for every name n and every predicate P, of the epistemic contents en
and eP associated with it; t is the activated term of the internal rep-
resentational system, and ft the associated identity criterion; and i is a
function mapping (i) the activated term t to the information it en-
coded into or associated with it; (ii) every name n to a (possibly
empty) set in of auxiliary terms activated in connection with n, to-
gether with information concerning them; (iii) every primitive pred-
icate P to some supplementary information iP from perception,
memory, etc. associated with P. Let me explain this terminology.

The epistemic content e associated with a name or to a predicate is
a certain amount of verbal or non-verbal information attached to
them. For instance, the name ‘‘Chomsky’’ might be associated with
the pieces of verbal information ‘‘Chomsky is a linguist’’ and
‘‘Chomsky teaches at M.I.T.’’, but also to such non-verbal infor-
mation as the mental representation of a face, or of a voice, stored in
some mental catalogue; and the predicate ‘‘x is square’’ might be
associated with the piece of verbal information ‘‘x has four equal
sides’’, but also to the mental representation of a square.5

Two restrictions are imposed on the epistemic content associated
with a name n. (i) Verbal information must be atomic, in the sense
that it has to be expressible by means of atomic sentences. The reason
is the following: as I said at the beginning, in order to explain the
notion of justification for (and therefore the meaning of) an atomic
sentence, I appeal to the notion of authorization to use a name; if the
explanation of this notion made reference to logically complex
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sentences, the whole approach could not satisfy a molecularity
requirement, since the explanation of the meaning of an atomic
sentence would presuppose the understanding of the meaning of
sentences of unlimited logical complexity. (ii) The atomic sentences
expressing verbal information associated with n must contain
occurrences of n; and non-verbal information associated with n must
be explicitly associated with n. The reason for this requirement is the
necessity of ensuring epistemic transparency for the formal notion of
authorization: any subject who associates with n the epistemic con-
tent e must know6 that he associates e with n.

I assume that the epistemic content associated with a name n or to
a predicate P is articulated into a fixed part fpen or fpeP, which must
be contained in every possible epistemic content associated with n or
with P, from a variable part vpen or vpeP, which is not subject to this
restriction. Intuitively, the information contained in fpen or fpeP is
the information without which a subject cannot be said to know the
meaning of n or P, or to have semantic competence about them. For
example, if n is a name for an ostensible object, it seems intuitively
correct to require that fpen contain nothing more than a sortal
indicating the sort of object n is intended to denote; if n is a name for
a number, it seems necessary to require that fpen contain more: all
that is necessary in order to identify the referent of n within the
sequence of natural numbers; if P is the predicate ‘‘square’’, it seems
necessary to require that fpeP contain some sort of mental model of a
square; if P is the predicate ‘‘kill’’ it seems necessary to require that
fpeP contains some ‘meaning postulate’ to the effect that if x killed y,
then y is dead; and so on.7 Which pieces of information are to be put
into fpen or fpeP is presumably an empirical question pertaining to
lexical semantics; it seems plausible to me that information in fpen or
fpeP comes from the lexicon, while information in vpen or vpeP comes
from the belief system.

Imagine now that on a certain occasion a subject s meets a
certain person, so that his visual apparatus generates a visual rep-
resentation t1, for example of a face: t1 is an instance of a term of
the internal representational system8 activated on that occasion.
When, on another occasion, s hears someone speaking of a common
friend, s’s memory activates some other representation t2, which is
another instance. When his teacher tells him: ‘‘Think of a number
with such and such properties’’, s elaborates through attention an-
other representation t3. And so on. I assume that with the activated
term t an identity criterion is associated, i.e., a function ft such that,
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for every term t0 of the internal representational system, ftðt0Þ ¼ 1 iff
t0 is a mental representation of the same object as t; so a class
naturally corresponds to ft: the class of terms t0 such that ftðt0Þ ¼ 1.
The specific nature of such a criterion may be extremely variable; I
simply assume that, in a given cognitive state, we associate to the
activated term some function of this kind. Plausibly, each term
belonging to the same class corresponding to ft is experienced by the
subject as a representation of the same entity, as a mode of giving it.
In a nutshell, this is how I suggest to explain the notion of an
object’s being given to a subject.9

The need of auxiliary terms and supplementary information con-
cerning them is illustrated by the following example. Suppose that s
associates with ‘‘Chomsky’’ the epistemic content ‘‘Chomsky is a
linguist’’ and ‘‘Chomsky teaches at M.I.T.’’, and imagine that on a
certain occasion someone tells s something about two linguists t1 and
t2 who teach at M.I.T.; clearly in this situation s is not intuitively
authorized to use ‘‘Chomsky’’ to refer to both; nor is s intuitively
authorized to use ‘‘Chomsky’’ to refer to either one of them. A
cognitive state is defined by choosing one of the two terms t1 and t2 as
the activated term, and the other as an auxiliary term activated in
connection with ‘‘Chomsky’’.

Once a cognitive state c ¼ he; ht; fti; ii is specified, the question
‘‘Does en authorize an idealized subject to use n to refer to the entity
given by t, in the presence of in?’’ has a definite meaning, in the sense
that the answer does not depend on other hidden features of the
context. It depends on two questions: (i) (the matching question)
whether there is an appropriate matching between the information
contained in en and the information it associated with t;10 and (ii)
(the uniqueness question) whether, for every auxiliary term t0 acti-
vated in connection with n and which matches en, the information it0

and the identity criterion ft permit putting t0 into the same class as
t.11 If the answers to the two questions are affirmative, any subject in
the cognitive state c is authorized to use n to refer to the entity given
by t, otherwise he is not.

We can therefore define the meaning of a name n as a function Mn

such that, for every cognitive state c ¼ he; ht; fti; ii, MnðcÞ ¼ 1 iff the
answer to both the matching question and to the uniqueness question
is ‘‘Yes’’. An authorization to use n to refer to the object given by t is a
cognitive state c ¼ he; ht; fti; ii such that MnðcÞ ¼ 1.

Let us see now how the notion of denotation can be defined. Given
the meaning Mn of a name n and a cognitive state c ¼ he; ht; fti; ii, the
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following relation can be defined on the class IR of the terms of the
internal representation system:

tRt0 ¼def Mnðhe; ht; fti; iiÞ ¼ 1 iff

Mnðhe; ht0; ft0 i; iiÞ ¼ 1;

obviously it is an equivalence relation, so it induces a partition on
IR.12 If t is an element of IR, I will call ‘‘jtjc’’ its equivalence class.

When Mnðhe; ht; fti; iiÞ ¼ 1, an idealized subject s in the state
c ¼ he; ht; fti; ii is intuitively authorized to use n to refer to jtjc; so it is
natural to identify jtjc with the denotation of n, in the state c. This is
correct, in fact, but it cannot be the whole story. The reason is that it
is possible either (1) that afterwards, i.e., in a subsequent cognitive
state c0, s realizes that in c he associated with n an intuitively incorrect
epistemic content; or (2) that in a subsequent cognitive state c0 s
realizes that the uniqueness condition is not satisfied. When this
happens, and s has reasons to believe that his new cognitive state is
intuitively ‘better’ than c, then s is no longer authorized to use n to
refer to jtjc, and we can no longer say that n denotes jtjc. It is
therefore necessary to define the denotation of n relatively to cogni-
tive states intuitively ‘better’ than c.

How is a correct cognitive state to be characterized? Let us con-
sider an example; I will articulate the short story I am going to tell
into different cognitive states of the subject s.13 Suppose s associates
with ‘‘Chomsky’’ the epistemic content e1: ‘‘Chomsky is a postman in
Brooklyn’’; this is his initial cognitive state c1. Later on ðc2Þ, in a
bookshop, he finds a book with the name ‘‘Noam Chomsky’’ on its
cover; it is probable that at this point he glances through the book.
Why? Because it is not common, but it is possible, that a postman in
Brooklyn writes a book; in that case it is probable that it is an
autobiography or something similar; turning the pages of the book, s
makes a test, and the outcome is negative: the book deals with lin-
guistics. Now s has several options, i.e., several possible explanations
of the data at his disposal: (1) Chomsky is a postman who does
linguistics in his spare time; (2) There are two persons named Noam
Chomsky, a linguist and a postman; (3) The friend who told s that
Chomsky is a postman in Brooklyn pulled s’s leg; (4) the book s has
in his hands is an April fool’s joke; and so on. To make a choice s
needs some selection criteria, and perhaps to acquire more informa-
tion. Suppose that, after this work, he selects (3) and therefore
associates with ‘‘Chomsky’’ the new epistemic content e2: ‘‘Chomsky
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is a linguist’’ ðc3Þ; at this point s can legitimately assert that e1 was
incorrect.

From this example, we can extract the following definitions:

DEFINITION 2.1. A cognitive state c0 ¼ he0; ht0; ft0 i; i0i is better than
c ¼ he; ht; fti; ii with respect to n (in symbols c0 �n c) iff the following
condition (a) and one of the conditions (b) or (c) are satisfied:

(a) the amount In of information contained in in is part of the amount
I0n of information contained in i0n;

(b) the amount En of information contained in en is part of the
amount E0n of information contained in e0n;

(c) En is not part of E
0
n, and the association of e0n with n yields a better

explanation of the data contained in i0n than the association of en.

DEFINITION 2.2. The cognitive state c is n-correct relative to the
cognitive state c0 iff conditions (a) and (b) are satisfied. It is n-incorrect
relative to c0 iff conditions (a) and (c) are satisfied.

DEFINITION 2.3. The cognitive state he; ht; fti; ii is n-correct and n-
complete relative to the cognitive state he0; ht0; ft0 i; i0i iff conditions (a)
and (b) are satisfied and, for every auxiliary term t00 in i0n which
matches e0n, the information present in i0n permits putting t00 into the
same equivalence class as t.

We can now define the notion of denotation:

DEFINITION 2.4. Given two cognitive states c ¼ he; ht; fti; ii and
c0 ¼ he0; ht0; ft0 i; i0i, n denotes the object o relative to c0 iff o ¼ jtjc and c
is n-correct and n-complete relative to c0.

Let us consider predicates. An important feature of their behavior is
that if a subject is authorized to concatenate a predicate with a name,
then he is authorized to concatenate it with any other name of the
same object, provided he is authorized to believe that it is a name of
the same object. If I am justified in asserting, for instance, that the
boy in front of me is running, then I am thereby justified in asserting
that Matthew is running, and that the elder son of my brother is
running, provided I am justified in believing that the boy in front of
me is Matthew, the elder son of my brother. In more elaborate terms,
we might say that predication, the operation of concatenating a
predicate with a name, has an implicit modal aspect, in the sense that
we do not simply ask ourselves whether we are authorized to con-
catenate a predicate with a given name, but with any other name we
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could use to refer to the same object. This seems to me the main
reason why we cannot content ourselves with the notion of authori-
zation to use a name to refer to a given entity, but we need the notion
of denotation of a name.

As in the case of names, a subject’s being or not being authorized
to concatenate a predicate with a name depends essentially, although
in a different measure,14 on the epistemic content he associates with
the predicate. For instance, if a subject associates with the predicate
‘‘x is square’’ the epistemic content ‘‘x has four equal sides’’, and the
activated term is a mental representation of a book with four equal
sides, then, since the activated term matches the epistemic content he
associates with the predicate, there is shape recognition, and s is
authorized to concatenate the predicate with that name; on the other
hand, if the subject associates the same epistemic content with the
predicate, and the activated term is a mental representation of a book
with four sides such that only opposite sides are equal, then, since the
activated term does not match the epistemic content associated with
the predicate, there is no shape recognition, and s is not authorized to
concatenate the predicate with that name.

But the intuitions we must account for are more complex. Con-
sider for example a situation t1 in which two subjects s1 and s2 sitting
in positions p1 and p2, respectively, look at a round disk placed on a
table. Through a suitable location of the subjects and in appropriate
lighting conditions it is possible to make s1 see the disk as round and
s2 see it as elliptical. Under the hypothesis that neither of the subjects
can move, it seems quite legitimate to say that in the situation de-
scribed, s1 is intuitively authorized to concatenate the predicate ‘‘x is
round’’ with the term ‘‘that disk’’, while s2 is authorized to concat-
enate the predicate ‘‘x is elliptical’’ with the same term. Imagine now
that at t2 the two subjects switch positions, so that s1 now sees the
disk as elliptical and s2 sees it as round. It is not intuitively legitimate
to say that at t2 both subjects are authorized to concatenate both the
predicate ‘‘x is round’’ and the predicate ‘‘x is elliptical’’ with
the term ‘‘that disk’’; the subjects will probably be uncertain about
the shape of the disk, and under normal conditions they will try to
acquire new relevant information, for example by touching the disk,
or by changing its position, etc. – a clear indication of the fact that
neither of them is authorized to concatenate either of the two pred-
icates with the term at t2. It seems plausible to say that, in order to
arrive at a cognitive state in which he is again authorized to con-
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catenate one of the predicates with a name of that disk, each subject
engages in a process whose goal is the selection of one representation
of that disk, among the ones to which he has access through per-
ception, memory, attention and so on, as the best one – the best from
the point of view of its capacity to inform the subject about the
properties of the disk. For instance, they will select the visual rep-
resentation that is ‘in accord’ with the tactile representation; they will
select the representation which, together with some general laws,
permits them to account for the others; and so on.15 From an abstract
point of view, we might say that they select the representation which
offers the best explanation of the relevant data.

If a cognitive state c ¼ he; ht; fti; ii is specified, then, for every name
n, the question ‘‘Does eP authorize an idealized subject to concatenate
P with n, in presence of iP?’’ has a definite meaning, in the sense that
the answer does not depend on other hidden features of the context.
It depends on another question (the matching question): whether the
hypothesis that there is an appropriate matching between the infor-
mation contained in eP and the information encoded into the t0 2 jnjc
that is selected as the best on the basis of the information contained
in iP is the best explanation of the data contained in eP, iP, en and in.
If the answer to the matching question is affirmative, any subject in
the cognitive state c is authorized to concatenate P with n, otherwise
he is not. Since this has to hold for every name n, we can identify an
authorization to concatenate P with a name with a cognitive state c in
which a function f is accessible such that, for every name n, fðnÞ ¼ 1
iff the answer to the matching question is ‘‘Yes’’. I will call f ‘‘the
concept expressed by P in c’’. The meaning of a (unary) predicate P is
therefore the function MP such that, for every cognitive state c,
MPðcÞ is the concept expressed by P in c.

On the basis of this definition, we can explain the fact that neither
of the two subjects s1 or s2 of the preceding example is authorized to
concatenate either of the two predicates ‘‘is round’’ and ‘‘is elliptical’’
with the term ‘‘that disk’’ at t2 by saying that, at t2, both subjects have
access (through memory or perception) to both the representation of
a round disk and to the representation of an elliptical disk, but nei-
ther representation can be selected by either subject as the best one.

In order to deal with predicates of variable arity, I shall henceforth
re-interpret the definition of an atomic cognitive state given above in
the following way: it is a triple c ¼ he; ht; fti; ii, where all is as before,
save that t is a k-tuple ht1; . . . ; tki of activated terms. An analogous
generalization of the matching question for predicates yields the
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definition of authorization to concatenate a k-ary predicate P with a
k-tuple of names.

Let me illustrate this generalization by considering the binary
predicate ‘‘¼’’. It seems reasonable to require that fpe¼ contains the
piece of information ‘‘x ¼ y iff x and y are the same thing’’;16 so,
when a cognitive state c ¼ he; ht; fti; ii is specified, then, for every pair
of names hn1; n2i, the question of whether a subject s is authorized to
concatenate ‘‘¼’’ with hn1; n2i boils down to the question of whether s
is authorized to use n1 and n2 to refer to the same equivalence class of
terms. Suppose that n1 is ‘‘Hesperus’’, n2 is ‘‘Phosphorus’’, that en1
contains the piece of information ‘‘Hesperus is the first celestial body
shining in the evening sky’’, and that en2 contains ‘‘Phosphorus is the
last celestial body shining in the morning sky’’. According to our
general formulation of the matching question, we must perform a
(mental or real) experiment: we must look for the ‘best’ terms (not
necessarily activated in c) belonging to jHesperusjc and jPhosphorusjc
and ask whether the hypothesis that they belong to the same equiv-
alence class of terms is the best explanation of the data available in c.

Of course, for predicates as well as for names, it is possible that the
epistemic content associated with P is intuitively incorrect. Therefore,
for reasons analogous to the ones explained above concerning names,
the notion of extension of a predicate at c must be relativized to
cognitive states. So we define the notions ‘‘c0 �P c’’and ‘‘c is P-correct
relative to c0’’ in a way perfectly analogous to our definitions of
‘‘c0 �n c’’ and ‘‘c is n-correct relative to c0’’, and then we can propose
the following

DEFINITION 2.5. Given two cognitive states c and c0, MPðcÞ is a
satisfaction-ground of P in c, relative to c0, iff c is P-correct relative
to c0.

We can now define the notion of justification for atomic sentences.
A justification for a sentence of the form ‘‘Pðn1; . . . ; nkÞ’’ is a cognitive
state c such that MPðcÞðhn1; . . . ; nkiÞ ¼ 1, i.e., intuitively, a cognitive
state in which an idealized subject is authorized to concatenate P with
n1; . . . ; nk. The meaning of ‘‘Pðn1; . . . ; nkÞ’’ can therefore be identified
with kc:MPðcÞðhn1; . . . ; nkiÞ, i.e., intuitively, with a classification cri-
terion of cognitive states, associating 1 with c iff an idealized subject
in c is justified to believe ‘‘Pðn1; . . . ; nkÞ’’.

Consider a justification j for Pðn1; . . . ; nkÞ, and a cognitive state c0:
j is a truth-ground of Pðn1; . . . ; nkÞ, relative to c0, iff j is n1-nk-complete
and P; n1-nk-correct, relative to c0.
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3. THE LOGICAL CONSTANTS AND CANONICAL JUSTIFICATIONS

The introduction of the logical constants amounts to the
assumption that the class of cognitive states is closed under certain
operations. We will see now which ones.

I will assume without discussion that fpe^ contains the piece of
information that a justification for A^B is a pair hj1; j2i, where j1 is a
justification for A and j2 a justification for B; so, when a cognitive
state c is specified, then, for every pair of sentences hA;Bi, the
question as to whether a subject s is justified in believing A^B boils
down to the question of whether s has access both to a cognitive state
j1 which is a justification for A and to a cognitive state j2 which is a
justification for B; a justification for A^B can therefore be identified
with the pair hj1; j2i.

Analogously, a justification for A _ B can be identified with either
a justification for A or a justification for B; and a justification for 9xA
with a pair hn; ji, where n is a name, and j a justification for A½n=x�.

Let us consider implication. Imagine the following situation: John
knows that the phone numbers in Milan have been changed
according to the following rule: dial 48 plus the result of adding 53 to
the old number. He wants to call Charles, a friend of his who lives in
Milan; it seems to him that his old number was 341951, but he is not
sure. In this situation John has neither a justification for the sentence

(5) Charles’ old number was 341951

nor a justification for the sentence

(6) Charles’ current number is 48342004;

but he does have, and knows that he has, a justification for the
conditional

(7) If Charles’ old number was 341951, then his current number is
48342004.

What, exactly, does his justification consist of? Of his knowledge
of the rule described above. We can therefore suggest that fpe�
contains the piece of information that a justification for A � B is a
general method m that is recognized as transforming every justifica-
tion j for A into a justification mðjÞ for B. As a consequence, when a
cognitive state c is specified, then, for every pair of sentences hA;Bi,
the question of whether a subject s is justified in believing A � B boils
down to the question of whether s has access to a cognitive state in
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which he knows such a general method; a justification for A � B can
therefore be identified with the method m. Analogously, a justifica-
tion for 8xA can be identified with a method m that is recognized as
associating with each name n a justification for A½n=x�.

These definitions may seem inadequate for (at least) two reasons.
First, I have required that justifications be epistemically transparent,
and one may wonder whether such general methods as the ones
introduced by the definitions are epistemically transparent. But it
should be kept in mind that we are making reference to an idealized
subject, i.e., a subject having no limits of memory, attention, and so
on: a subject whose cognitive capacities and performances in any
given occasion are taken as representative of the ones of an arbi-
trary member of the same species. Well: if such an idealized subject
is not able, when acquainted with m, to recognize it as a method
with such and such characteristics, the sole conclusion it is natural
to draw is that m is not such a method. How could it be a method
with such and such characteristics if nobody were capable of
acknowledging that it is? Of course, it is possible that I am not
capable of realizing that something is such a method, because of the
limits of my IQ, memory, attention, and so on; but these are pre-
cisely the factors from which we abstract when we make reference
to an idealized subject.

The second reason for perplexity may come from having noticed
that, on the one hand, I have said that justifications for empirical
sentences are non-conclusive, on the other hand, I have suggested to
define justifications for A � B and for 8xA in the same way proofs of
the same sentences are defined, where proofs of mathematical sen-
tences are indefeasible; in other words, how might a method associ-
ating with each name n a justification for A½n=x� be non-conclusive?
My provisory answer17 is very simple: remember that non-conclu-
siveness is the logical disjunction of defeasibility and non-factivity;
although it must be conceded that a justification for 8xA, as I have
defined it, is indefeasible, it is equally clear that it is not factive: a
justification for A½n=x�, for some n, might not be a sufficient condition
of the truth of A½n=x�; of course, the notion of truth involved here
needs further clarification.18

Let us consider negation. The first, obvious, idea is to apply the
intuitionistic definition of the negation of a mathematical sentence to
empirical sentences, and to define a justification for the negation of A
as a general method transforming every alleged justification for A
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into a justification for the absurdity ?, where ? is defined as the
sentence for which there is no justification.

Indeed, in the case of many empirical sentences, their negations
cannot be construed except as intuitionistic. Consider for instance the
sentence

(8) Not all prehistoric men were black-eyed;
probably we will never be able to say, of a specific prehistoric man,
that he was black-eyed; at the same time, it is quite plausible to say
that we have justifications to believe that (8) is true; and if we reflect
on the nature of these justifications, we realize that each of them can
be verbalized as a reductio ad absurdum of the assumption that all
prehistoric men were black-eyed, as the intuitionistic explanation of
negation requires.

But there are important classes of empirical sentences whose
negations cannot plausibly be conceived as intuitionistic. Let us re-
turn to the example of the two subjects looking at a round disk from
different positions; at t1 s1, who sees the disk as round, has an
obvious intuitive justification to believe the sentence

(9) That disk is not elliptical.
Suppose now that we define a justification for the negation of A as a
justification for A �?, and ask ourselves whether, with this defini-
tion, we can allow s1 to have a justification for (9). In order to have a
justification for ð9Þ �?, s1 should know a general method m he
recognizes as transforming every justification j for

(10) That disk is elliptical
into a justification for ?. We know that a justification for (10) is a
cognitive state c such that MellipticalðcÞðthat diskÞ ¼ 1. Imagine now
that at t2 the two subjects switch positions, so that s1 now sees the
disk as elliptical and s2 sees it as round; if s1 had known m at t1, at t2
he should be able to transform c into a justification for ?; but this is
just what s1 is not able to do at t2: what does happen at t2 is that s1
feels himself no longer justified in believing that the disk is round,
precisely because he considers c as a possible justification for the
belief that the disk is elliptical. The answer to our question is there-
fore negative.

The preceding remarks suggest that the negation of an empirical
sentence is in many cases an operation that differs greatly from impli-
cation. Another suggestion in the same direction comes fromobserving
that, in empirical contexts, a very natural way of justifying the negation
of a sentence is to exhibit a counterexample to the sentence. For in-
stance, the most natural way to justify ‘‘Not all men are good’’ is to
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present a bad man; by the way, to derive a contradiction from the
assumption that all men are goodwould bemuchmore complicated, in
spite of the fact that the justified proposition would be, in a sense,
weaker. Analogously, themost natural way to justify ‘‘It is not the case
that John is away andMary is at home’’ is to justify either ‘‘John is not
away’’ or ‘‘Mary is not at home’’.

The last example shows another feature of empirical negated
sentences to which intuitionistic negation is not faithful. Intuitively, a
justification j for ‘‘It is not the case that John is away and Mary is at
home’’ is as defeasible as a justification j0 for ‘‘John is away and Mary
is at home’’; but if we construe the negated conjunction intuitionis-
tically, it becomes a case of implication, and justifications for impli-
cations are normally indefeasible.

My suggestion of counterexamples as justifications for negated
sentences might give the impression of an implicit appeal to the
classical, or realist, meaning of negation, since it depends on a
tacit use of de Morgan’s laws and similar laws for quantifiers. But
this impression is false. Classical negation is not the sole negation
satisfying those laws: it is – I conjecture – the sole explicitly
definable negation satisfying those laws; but if we reject the idea
that negation must be explicitly definable, and embrace the idea of
an inductively defined operation, we can look for a constructive
negation. In fact, a very good candidate is already at hand:
Nelson’s constructible falsity.19 I will give below the inductive
clauses.

As concerns atomic sentences, let us come back to the two subjects
s1 and s2. I have said that at t1 s1, who sees the disk as round, has an
obvious intuitive justification for sentence (9); what does this justifi-
cation consist of? One might be tempted to answer that it consists of
two things: the justification j1 he has to believe

(11) That disk is round,
and the justification j2 he has to believe that being round and being
elliptical are two incompatible properties of physical objects: it is be-
cause he knows that being round is incompatible with being elliptical
that he may legitimately choose the former property as a token for the
absence of the latter.20 Notice that if we defined a justification for (14)
in this way, we would not run into the difficulty that a justification for
(14) would simultaneously be also a justification for

(12) That disk is not square
and for several other sentences which, intuitively, are not synony-
mous to (9); for j2, whatever it is, will be different from a justifi-
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cation for believing that being square and being elliptical are
incompatible. But we would run into another difficulty: the choice
of j1 as the first component of a justification for (9) is not more
motivated than the choice of a justification for any other sentence of
the form ‘‘That disk is P’’, where P is a property incompatible with
being elliptical; and, since there seems to be no way of regimenting
the class of the properties incompatible with being elliptical, the
choice of that class as the first component would entail the loss of
the decidability of the relation ‘‘x is a justification for A’’ when A is
a negated predication.

Consider the cognitive state c ¼ he; ht; fti; ii, where eelliptical con-
tains a stored model of an ellipse, tthat disk is a newly derived mental
representation of a round disk and ithat disk is empty; of course
MellipticalðcÞðthat diskÞ ¼ 0, since there is no matching between
eelliptical and the information encoded into the term tthat disk which,
since s1 has not yet seen the disk from position p2, is selected as the
best among the terms belonging to jthat diskjc. My suggestion is
simply to take c as a justification for (9) and, in general, to define a
justification for :Pðn1; . . . ; nkÞ as a cognitive state c such that
MPðcÞðhn1; . . . ; nkiÞ ¼ 0.

Finally, I will define a canonical justification for a sentence A as a
justification for A such that in order to establish that it is a justifi-
cation for A, only information from fpeE, for every constituent
expression E of A, is needed. Notice that, according to this definition,
the following argument for A^B

(13)

P1 P2

C � A ^ B C

A ^ B

is a justification for A ^ B, since from it a justification for A
and a justification for B can be extracted; but it is not a
canonical justification for A ^ B, since in order to establish that
it is such a justification one needs more than information from
fpe^ and from the epistemic contents associated with the con-
stituents of A and B.

4. TRUTH-GROUNDS AND CONSTRUCTIVE VALIDITY

To conclude, let us see how the ideas illustrated above can give rise to
a definition of constructive validity.
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Given a first-order language L with a set N of names and identity
predicate, a cognitive structure for L is a pair C ¼ hC;Mi, where C is
a (nonempty) set of temporally ordered cognitive states
c ¼ he; ht; fti; ii and M a meaning-assignment, i.e., a function such
that

– for every name n, Mn is a function such that, for every c 2 C,
MnðcÞ 2 f0; 1g;

– for every predicate Pk, MPk is a function such that, for every
c 2 C, MPkðcÞ is a function such that, for every n1 . . . nk 2 C,
MPkðcÞðhn1 . . . nkiÞ 2 f0; 1g.

Given a cognitive structure C, and an atomic sentence Pkðn1; . . . ; nkÞ,
the sets fcjMPkðcÞðhn1 . . . nkiÞ ¼ 1g and fcjMPkðcÞðhn1 . . . nkiÞ ¼ 0g
are determined; in other words, for every atomic sentence A, the set
JCðAÞ of its C-justifications and the set JCð:AÞ of C-justifications for
its negation are determined. The set of the C-justifications of every
sentence can be inductively defined in the way sketched in Section 3;
let me sum up the inductive clauses:

1. JCð?Þ ¼ ;

2.
JCðB^CÞ ¼ JCðBÞ � FJðCÞ
JCð:ðB^CÞÞ ¼ JCð:BÞ �[ JCð:CÞ

3.
JCðB _ CÞ ¼ JCðBÞ �[ JCðCÞ
JCð:ðB _ CÞÞ ¼ JCð:BÞ � JCð:CÞ

4.
JCðB � CÞ ¼ JCðCÞJCðBÞ

JCð:ðB � CÞÞ ¼ JCðBÞ � JCð:CÞ

5.
JCð8xBÞ ¼

Y

n2N JCðB½n=x�Þ

JCð:ð8xBÞÞ ¼
X

n2N JCð:B½n=x�Þ

6.
JCð9xBÞ ¼

X

n2N JCðB½n=x�Þ

JCð:ð9xBÞÞ ¼
Y

n2N JCð:B½n=x�Þ

We must now define the notion ‘‘j is a C-truth-ground of A, relative
to c’’ (in symbols j�C

c A).

1. If A is Pkðn1; . . . ; nkÞ or :Pkðn1; . . . ; nkÞ, and j 2 JCðAÞ, then j�C
c A,

iff j is n1-nk-complete and P; n1-nk-correct, relative to c.
2. If A is B^C, and j ¼ hj1; j2i 2 JCðAÞ, then j �C

c A iff j1�C
c B and

j2�C
c C.

GABRIELE USBERTI696



If A is :ðB^CÞ, and j 2 JCðAÞ, then: if j ¼ hj1; 0i, j�C
c A iff

j1�C
c :B; if j ¼ hj2; 1i, j�C

c A iff j2�C
c :C.

3. If A is B _ C, and j 2 JCðAÞ, then: if j ¼ hj1; 0i, j�C
c A iff j1�C

c B; if
j ¼ hj2; 1i, j�C

c A iff j2�C
c C.

If A is :ðB _ CÞ, and j ¼ hj1; j2i 2 JCðAÞ, then j�C
c A iff j1�C

c :B
and j2�C

c :C.
4. If A is B � C, and j 2 JCðAÞ, then j�C

c A iff, for every j0 2 JCðBÞ, if
j0 �C

c B, then jðj0Þ �C
c C.

If A is :ðB � CÞ, and j ¼ hj1; j2i 2 JCðAÞ, then j�C
c A iff j1�C

c B
and j2�C

c :C.
5. If A is 8xB, and j 2 JCðAÞ, then j�C

c A iff, for every n 2 N,
jðnÞ�C

c B½n=x�. If A is :ð8xBÞ, and j ¼ hn; j0i 2 JCðAÞ, then j�C
c A

iff j0 �C
c ½1�:B½n=x�.

6. If A is 9xB, and j ¼ hn; j0i 2 JCðAÞ, then j�C
c A iff j0 �C

c B½n=x�. If A
is :ð9xBÞ, and j 2 JCðAÞ, then j�C

c A iff, for every n 2 N,
jðnÞ�C

c :B½n=x�.
Given a cognitive structure C ¼ hC;Mi, a sentence A is C-construc-
tively valid iff there is a j 2 JCðAÞ such that, for every c 2 C, j�C

c A.
A sentence A is constructively valid iff, for every cognitive structure

C, A is C-constructively valid.
We can also define the notion ‘‘A is C-true relative to c’’ (in

symbols �C
c A), in the obvious way: �C

c A iff there is a j such that
j�C

c A. Notice that this notion of truth distributes over _; for
�C

c ðB _ CÞ iff there is a j such that j�C
c B _ C; then either j ¼ hj1; 0i,

and j1�C
c B, and therefore there is a j such that j�C

c B, i.e. �C
c B; or

j ¼ hj2; 1i, and therefore there is a j such that j�C
c C, i.e. �C

c C.

NOTES

1 See Chomsky (1980, pp. 51 ff.) for an illustration of such a position.
2 I am not implying that Dummett’s argument is valid; I am only saying that the

modified argument is not less compelling than the original one for someone who
finds the specifiability requirement more acceptable than the manifestability
requirement. For a more detailed justification of this thesis see Usberti (1995, IV.2).
3 I am presupposing here that the existence of a justification is (anti-realistically) a
temporal notion, in the sense that a justification for A may exist at t and not exist
before or after t. Of course a constructivist might tend to embrace an atemporal

notion of existence, and therefore of truth; in this case the reason explained in the
text should be restated by saying that for some sentence A it might happen that there
is a justification for both A and :A.
4 First, I will concentrate on unary predicates.
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5 It is not necessary here to enter into a more detailed analysis of the nature of such
mental representations. Some interesting suggestions may be found in Marr (1982).
6 Not necessarily consciously.
7 The difference emphasized in footnote 14 below could be expressed by saying that

the fixed part of the epistemic content associated with a name – i.e. the amount of
information a language user must associate to the name in order to be credited with
knowledge of its meaning – is minimal, while the fixed part of the epistemic content

associated with an adjectival predicate and to a verb is maximal.
8 As a matter of fact, there will be several representational systems: visual, auditory,
and so on; and also memory and attention may be considered, for our present

purposes, as such systems. For simplicity I consider them as one.
9 For a more detailed account see Usberti (2002).
10 Of course, the specific nature of this matching may vary according to the nature of

information to be matched, and the devices that verify it may be very different from
one another.
11 The relevant notion of equivalence class is defined two paragraphs down.
12 The classes belonging to this partition should not be confused with the ones

corresponding to the identity criteria associated with activated terms: two terms of
the internal representational system may be in the same class independently of their
matching the epistemic content associated with any name.
13 Of course, a much more fine-grained analysis would be possible; but the one
suggested in the text is sufficient to explain my point.
14 There is a clear intuitive difference between proper names, on the one hand, and

adjectival predicates and verbs, on the other hand: while we should not say that
someone who does not know that Chomsky is a linguist ignores the sense of
‘‘Chomsky’’, we do say that someone who does not know that a square field has four
equal sides ignores the meaning of ‘‘square’’, and that someone who does not know

that whoever has been killed is dead ignores the meaning of ‘‘kill’’.
15 For an account along these lines of our construction of empirical reality see
Musatti (1926).
16 Of course we are not forced to make this choice; if the epistemic content associated
with ‘‘¼’’ were not the same in every cognitive state, then M¼ðcÞ would simply vary
according to c.
17 Provisory in the sense that a thorough analysis of empirical implications should be
much more fine-grained and distinguish between several types of implication.
18 On this point cp. Usberti (1995).
19 Cp. Nelson (1949).
20 ‘‘[I]t might be maintained that every significant observation must be an observa-
tion of some property, and further that the absence of a property P if it may be
established empirically at all, must be established by the observation of (another)

property N which is taken as a token for the absence of P.’’ (Nelson 1959, p. 208.).
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GRIGORI MINTS

NOTES ON CONSTRUCTIVE NEGATION

ABSTRACT. We put together several observations on constructive negation. First,
Russell anticipated intuitionistic logic by clearly distinguishing propositional prin-
ciples implying the law of the excluded middle from remaining valid principles. He
stated what was later called Peirce’s law. This is important in connection with the

method used later by Heyting for developing his axiomatization of intuitionistic
logic. Second, a work by Dragalin and his students provides easy embeddings of
classical arithmetic and analysis into intuitionistic negationless systems. In the last

section, we present in some detail a stepwise construction of negation which essen-
tially concluded the formation of the logical base of the Russian constructivist
school. Markov’s own proof of Markov’s principle (different from later proofs by

Friedman and Dragalin) is described.

1. INTRODUCTION

We put together several little-known observations on constructive
negation. Section 2 contains a description of a passage in (Russell
1903) where Russell anticipated intuitionistic logic by clearly distin-
guishing propositional principles implying the law of the excluded
middle from remaining valid principles. In fact, he states what was
later called Peirce’s law. This is important in connection with the
method used later by Heyting (see Troelstra 1990, Section 3.1) for
developing his axiomatization of intuitionistic logic.

Section 3 presents some little-known Russian work on negation-
less mathematics. It turns out that classical arithmetic and analysis
can be embedded into intuitionistic negationless systems. Section 4
presents in some detail a stepwise construction of negation which
essentially concluded the formation of the logical base of the Russian
constructivist school.

2. RUSSELL’S ANTICIPATION OF INTUITIONISTIC LOGIC

In Section 18 (Chapter II) of (Russell 1903), Russell lists 10 propo-
sitional axioms. The first nine (Section 2.1 below) are intuitionisti-
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cally valid. The next requires some comments. Its statement takes
into account Russell’s definition of a proposition in Section 16 of
(Russell 1903): ‘‘To say ‘p is a proposition’ is equivalent to saying ‘p
implies p’ ’’. We quote from Section 18:

(10) If p implies p and q implies q then ‘‘ ‘p implies q’ implies p’’ implies p. This is

called the principle of reduction; it has less self-evidence than the previous principles,
but is equivalent to many propositions that are self-evident. I prefer it to these,
because it is explicitly concerned, like its predecessors, with implication, and has the

same kind of logical character as they have. If we remember that ‘‘p implies q’’ is
equivalent to ‘‘q or not-p,’’ we can easily convince ourselves that the above principle
is true; for ‘‘ ‘p implies q’ implies p’’ is equivalent to ‘‘p or the denial of ‘q or not-p,’’’

i.e. to ‘‘p or ‘p and not-q,’’’ i.e. to p. But this way of persuading ourselves that the
principle of reduction is true involves many logical principles which have not yet
been demonstrated, and cannot be demonstrated except by reduction or something
equivalent. The principle is especially useful in connection with negation. Without its

help, by means of the first nine principles, we can prove the law of contradiction; we
can prove, if p and q be propositions, that p implies not-not-p; that ‘‘p implies not-q’’
is equivalent to ‘‘q implies not-p’’ and to not-pq; that ‘‘p implies q’’ implies ‘‘not-q

implies not-p’’; that p implies that not-p implies p; that not-p is equivalent to ‘‘p
implies not-p’’; and that ‘‘p implies not-q’’ is equivalent to ‘‘not-not-p implies not-q.’’
But we cannot prove without reduction or some equivalent (so far at least as I have

been able to discover) that p or not-p must be true (the law of excluded middle); that
every proposition is equivalent to the negation of some other proposition; that not-
not-p implies p; that ‘‘not-q implies not-p’’ implies ‘‘p implies q’’; that ‘‘not p implies
p’’ implies p, or that ‘‘p implies q’’ implies ‘‘q or not-p.’’ Each of these assumptions is

equivalent to the principle of reduction, and may, if we choose, be substituted for it.
Some of them – especially excluded middle and double negation – appear to have far
more self-evidence. But when we have seen how to define disjunction and negation in

terms of implication, we shall see that the supposed simplicity vanishes, and that, for
formal purposes at any rate, reduction is simpler than any of the possible alterna-
tives. For this reason I retain it among my premisses in preference to more usual and

more superficially obvious propositions.

Let us repeat the principles which Russell claims follow from the first
nine principles (conjunction of p and q is expressed here by pq):

:ðpð:pÞÞ ; p! ::p; ðp! :qÞ () ðq! :pÞ

ðp!:qÞ ():ðpqÞ; ðp!qÞ!ð:q!:pÞ; p!ð:p!pÞ

:p () ðp! :pÞ; ðp! :qÞ () ð::p! :qÞ:
All these principles are provable in intuitionistic and even in minimal
logic.

Next we list the principles Russell claims cannot be proved with-
out the reduction principle. None of these principles is provable
intuitionistically, since each of them has an instance which
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intuitionistically implies p _ :p. Such an instantiation is given in
square brackets below:

p _ :p
9qðp() :qÞ ½p=p _ :p�
::p! p ½p=p _ :p�
ð:q! :pÞ ! ðp! qÞ ½p=>; q=q _ :q�
ð:p! pÞ ! p ½p=p _ :p�
ðp! qÞ ! ðq _ :pÞ ½q=p�

So Russell was right in both the positive and negative part. This is
especially interesting in view of the evidence (van Dalen (1999)) that
Brouwer was studying Russell’s work at the time when the principles
of intuitionism were first developed.

2.1. Russell’s Original Propositional Principles

ð1Þ ðp! qÞ ! ðp! qÞ
ð2Þ ðp! qÞ ! ðp! pÞ
ð3Þ ðp! qÞ ! ðq! qÞ
ð4Þ A true hypothesis in an implication may be

dropped, and the consequent asserted

ð5Þ ðp! pÞ and ðq! qÞ ! ðpq! pÞ
ð6Þ ðp! qÞ and ðq! rÞ ! ðp! rÞ

ð7Þ ðq! qÞ and ðr! rÞ and ðp! ðq! rÞÞ ! ðpq! rÞ
ð8Þ ðp! pÞ and ðq! qÞ ! ðpq! rÞ ! ðp! ðq! rÞÞ
ð9Þ ðp! qÞ and ðp! rÞ ! ðp! qrÞ

3. NEGATIONLESS MATHEMATICS

Philosophical difficulties connectedwith the use of negation and related
notions such as the empty set were noticed very early, and stressed in
modern time byGriss (1955), who suggested constructing intuitionistic
mathematics without negation. To avoid trivial solutions like smug-
gling negation :A back as A! 0 ¼ 1 it was proposed to eliminate
implication in favor of a new connective A!x B where x � x1 . . .xn.
Formula A!x B is to be understood as 8xðA! BÞ & 9xA. In other
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words, implication is allowed only if its premise is non-void. Positive
suggestions by Griss caused some doubts: it was not clear how to
develop significant parts of mathematics in a negationless way.
Several systems of negationless logic and arithmetic were proposed
(see Nelson 1966), but their strength was not obvious. It turns out
they have the same strength as the corresponding intuitionistic
systems. The simplest proof was given recently by Krivtsov (2000a).
It uses the fact that traditional implication

A! B

is intuitionistically equivalent to

8xððA _ x ¼ 0Þ ! ðB _ x ¼ 0ÞÞ:
The latter implication can be written as ðA _ x ¼ 0Þ !x ðB _ x ¼ 0Þ
and has a non-void premise since x can be instantiated by 0. The
actual modeling of intuitionistic arithmetic, analysis and higher type
systems in negationless terms given in (Krivtsov 2000a,b) is slightly
more complicated.

An earlier work (Mezhlumbekova 1975) by V. Mezhlumbekova
used similar ideas in a more mathematical setting. It is contained in
her Ph.D. thesis advised by Dragalin. Consider the Dialectica inter-
pretation (cf. Avigad and Feferman 1998) of first order intuitionistic
arithmetic HA into the language of functionals of finite types. It
transforms an arbitrary HA-formula A into a formula 9y8x/, where
x; y are finite sequences of variables of finite types, and / is a
quantifier-free formula. We assume that / has a form t ¼ 0 where t is
a term in the language of primitive recursive functionals of finite type.
Every quantifier free formula / can be put into a form t ¼ 0 by
familiar transformations of primitive recursive formulas. Let /� be
obtained from / by ‘‘untangling’’ higher order application using
Kleene’s normal form for partial recursive functions:

w½Apðt; sÞ� :¼ 9zðT1ðt; s; zÞ & w½Uz�Þ:
Recall that the hereditarily recursive operations (HRO) of type 0 are
natural numbers for h ¼ 0. HRO of type r! s are Gödelnumbers
of partial recursive functions that define total functionals from HRO
of type r to HRO of type s. Let Vr denote the definition of HRO of
type r with V0ðxÞ :¼ ðx ¼ xÞ.

For an arbitrary formula A of HA having Dialectica interpretation
9yr8xs/, consider a negationless formula of first-order arithmetic

9yðy 2 Vr & ðx 2 Vs !x /�ÞÞ:
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All sets Vr are obviously non-void. Mezhlumbekova sketches a proof
of the following statement:

If HA ‘ A, then for some natural numbers k it is provable in a
weak system of negationless arithmetic HAG that

k 2 Vr & ðx 2 Vs !x /�½y=k�Þ:
In other words, HA is embedded into HAG. Combined with negative
translation of first order classical arithmetic (Peano arithmetic) PA
into HA, this shows that HAG has the same deductive power as
classical arithmetic. More precisely, for negative formulas / one has

HA ‘ ð9yðy 2 Vr & ðx 2 Vs !x /�ÞÞÞ () /:

4. TREATMENT OF NEGATION IN THE RUSSIAN CONSTRUCTIVIST

(MARKOV) SCHOOL

This section presents an account of a work which essentially con-
cluded the construction of the logical base for the work of the Rus-
sian constructivist school.1 This school, founded by A.A. Markov
(1903–1979), insisted on developing mathematics using only effective,
mechanizable means. Here we describe Markov’s approach to the
semantics of negative arithmetical formulas. The important require-
ment of Markov-style constructivism was that the objects should be
coded by natural numbers. This directed attention to theories for-
malizable in the language of first order arithmetic.

The logic of Markov’s school can be described using three basic
principles: recursive realizability,Markov’s principle and classical logic
for sentences containing no constructive problems, i.e., 9;_-free sen-
tences (Mints 1983; Troelstra and van Dalen 1988). This is a complete
description from the classical point of view. Markov presents his ap-
proach in quite a different way. He considers a formal language L2xþ1
(Markov 1976) having the same expressive power as the language of
first-order arithmetic with all logical connectives&;_;�;8; 9; 8 �;9 �
(the two latter quantifiers are bounded). Arbitrary formulas of this
language are transformed into formulas of the form

9xA ð1Þ
where A is an almost negative formula: only decidable formulas can
occur after 9;_. Transformation into the form (1) is done by the
algorithm SH (Markov 1976, §12) based on the ideas of Shanin (1958)
and equivalent (under a suitable coding in the intuitionistic arithmetic
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HA) to recursive realizability as introduced by Kleene (1958). This
step and related logical principles were intensively discussed in the
early stages of the Russian constructivist school, and by the mid-
sixties they were sufficiently clear. Markov’s discussion of the algo-
rithm SH is relatively brief.

It is easy to transform the formula A in (1) into a negative formula
A0 which contains neither _ nor 9-quantifiers (so that HA derives
::A0 $ A0) using Markov’s principle: it is enough to replace 9xM by
:8x:M and A _ B by :ð:A & :BÞ. But Markov’s goal was to
construct a semantics for almost negative formulas in a bottom-up
fashion and simultaneously justify the principle of constructive selec-
tion (his name for Markov’s principle). In the following, we consider
only semantics of almost negative formulas sliced into stages (steps)
according to implication nesting: recall that negation is defined via
implication and ?. It is known that in the presence of the universal
quantifier 8 implication complexity corresponds to quantifier com-
plexity (number of quantifier alternations) used in the investigations
of classical arithmetic. Using the notation ? ¼ ð0 6¼ 0Þ; :A ¼
A � ?; _9xA ¼ :8x:A a formula 8x1 _9x2 . . .8xk _9xkþ1M containing k
alternations of quantifiers is translated into a formula
8x1ð8x2ð. . . ð8xkþ1:M � ?Þ . . . � ?Þ � ?Þ containing k ‘‘essential’’
implications. The importance of implication in constructive mathe-
matics was observed early enough (Heyting 1930; Kolmogorov 1932)
and by the beginning of the 1960s there were hopes of finding its
interpretation in almost negative formulas based on a deductive
understanding sketched in papers by Lorenzen (cf. Lorenzen 1954)
and based on the notions of derivable and admissible rule. For a
given formal system C, a rule

A

B
ð2Þ

is admissible if C ‘ A implies C ‘ B where ‘ is the derivability sym-
bol. The rule (2) is derivable (in the system C) if there is a deduction of
B from A by the rules of C. Every derivable rule is obviously
admissible, but the converse is not true generally. A good example is
the disjunction property of intuitionistic formal systems: the rule

:A! B _ C

ð:A! BÞ _ ð:A! CÞ
for closed formulas A;B;C is admissible in the intuitionistic propo-
sitional calculus, but is not derivable there. Otherwise the formula
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ð:A! B _ CÞ ! ðð:A! BÞ _ ð:A! CÞÞ
would be intuitionistically derivable. If C is a standard logical system,
i.e., the set of derivable formulas is recursively enumerable, the deriv-
ability of the rule (2) can be expressed by an arithmetical formula

9x Proof ðx;GðAÞÞ ! 9y Proof ðy;GðBÞÞ; ð3Þ
where GðAÞ;GðBÞ are Gödelnumbers (numerical codes) of the for-
mulas A;B and Proof is the familiar proof predicate. If the calculus C
is complete for a class of formulas containing A and B, then (3) can
be rewritten as

TrueðAÞ ! TrueðBÞ;
where TrueðFÞ means that F is true. This underlies Markov’s defi-
nition of implication as admissibility of a rule for the formulas of a
basic language containing essentially R0

1-formulas (language L1 in
Markov 1976). By the principles codified by recursive realizability,
formula (3) is interpreted as expressing the existence of an effective
function transforming x into y:

ð9f 2 RecÞð8xðProofðx;GðAÞÞ ! ProofðfðxÞ;GðBÞÞÞÞ;
where f 2 Rec means that a natural number f is a code of a unary
total recursive function.

For an implication F � G which is not immediately reducible to
implications of R0

1-formulas Markov suggested interpretation by
derivability of the corresponding rule F ‘ G. He used such a defini-
tion mainly in a situation when there exists a logical system C (which
is not recursively enumerable in general) which is sound for some
previously defined notion of truth TrueðHÞ for the formulas H of the
same complexity as F and G. In such a case it was always understood
that all true (in the sense of the predicate True) formulas H are added
to the axioms of CÞ. In other words, a formula F � G is true if
F ;F ‘ G by the rules of the system C where F ¼ fFe : TrueðFÞg.
Formulas 8xA½x� beginning with an unbounded universal quantifier
are reduced to simpler formulas using the x-rule (also called Carnap’s
rule):

. . .A½n� . . . all n

8xA½x�
Markov requires that every application of this rule be constructive
(there should be a uniform general method) and introduces by a
generalized inductive definition a notion of truth based on this rule.
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Such a treatment is equivalent to the notion of a recursive derivation
with x-rule if one admits a principle of generalized induction corre-
sponding to this inductive definition.

The only remaining special rule of the stepwise semantics is
Markov’s principle. It can be stated as an implication

::9xM � 9xM; ð4Þ
where M is a formula containing no unbounded quantifiers. For the
premise ::9xM of the implication (4) the truth turns out to be
equivalent to derivability in a system (to be denoted by C2) with
effective x-rule and intuitionistic logic. This made it possible to use
the following important observation (Markov 1966b,1976):

Theorem 4.1 Markov’s rule

::9xM
9xM ð5Þ

where M is an arithmetical formula without unbounded quantifiers, is
admissible in the system C2.

Similar results for other systems were known in the literature
(Kreisel 1958). It was the possibility of justifying the rule at a low
stage of the introduced hierarchy that was important to Markov.
Another important feature was a method of the proof which antici-
pated later proofs by Dragalin (1980) and Friedman (1978). The lat-
ter two proofs use much weaker means (Kalmar elementary functions
are sufficient) to transform the proofs than earlier proofs which used
cut elimination. Markov sketched his proof only for systems with the
x-rule described below, but its specialization for the system C2

(Markov 1966b) would be elementary in the same sense as the proofs
by Friedman and Dragalin.

After admissibility of the rule (5) is established, Markov postulates
it at the next level as a basic rule, so that the implication
::9xM � 9xM turns out to be true. The final result is a stepwise
definition of the constructive truth for almost negative arithmetical
formulas which is equivalent to the standard classical definition if one
uses classical logic (cf. Mints 1983).

4.1. One-Quantifier Systems

4.1.1 The First Approximation
Details of the definitions changed in the process of investigation. The
first publication (Markov 1966a,b) contained only the two lowest
levels. The language L1 in (Markov 1966b) deals with strings in a
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finite alphabet and has the same expressive power as an arithmetical
language L1 including all Kalmar-elementary functions, equations,
inequations (i.e., negated equations), &;_, bounded quantifiers
ð8 � tÞ; ð9 � tÞ and the unbounded existential quantifier 9. Recall
that Kalmar-elementary functions are constructed from the con-
stants, projections, þ;� and ½a=b� by bounded sums, bounded
products and substitution.

Formulas of L1 are essentially R0
1-formulas. The truth definition

for closed L1-formulas in (Markov 1966b) is standard. A calculus C1

described in (Markov 1966b) is complete for L1. We describe a
similar calculus which is complete for the arithmetical language L1.
Let jtj stand for the numerical value of the closed term t, the letter n
stand for an arbitrary numeral, i.e., an expression of the form
0þ 1þ � � � þ 1, and F½v=t� is the result of substituting the term t for
all free occurrences of a variable v in F with standard precautions. F½t�
stands for F½x=t�.

Calculus C1:
Axioms:
True closed equations t ¼ r and true closed inequations t 6¼ r
Inference rules:
Introduction rules for &;_;9:

F G

F&G

F

F _ G

G

F _ G

F½t�
9xA

Introduction rules for bounded quantifiers:

F½n�
ð9x � nÞF

ð9x � nÞF
ð9x � nþ 1ÞF

ð9x � jtjÞF
ð9x � tÞF

F½0�
ð8x � 0ÞF

ð8x � nÞF F½nþ 1�
ð8x � nþ 1ÞF

ð8x � jtjÞF
ð8x � tÞF

It is easy to see that these rules are sound for the (obvious under-
standing of the) language L1. By induction on the formula it is easy to
show that these rules are complete: every true formula is derivable. The
language L2 in (Markov 1966b) has the same expressive power as the
arithmetical language L2 which has as its formulas all formulas of L1,
all implications F � G where F;G 2 L1 and arbitrary conjunctions of
formulas in L2. Hence nested implications are not allowed. The truth
of a closed implication F � G is defined as admissibility of the rule

F

G
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in the calculus C1, and conjunction is understood in a natural way. By
the completeness of the calculus C1 this definition is equivalent to a
standard classical definition. For the formulas of the language L2

Markov defines (1966b) a sound calculus C2. The main technical
feature of that calculus is the reformulation of standard axioms and
rules of the intuitionistic logic and arithmetic adapted to the
restricted language considered here. Except for axioms corresponding
to the standard defining equations for computable functions and
usual properties of bounded and unbounded quantifiers, calculus C2

contains two induction rules for proving properties of strings in a
finite alphabet. The corresponding rule for the arithmetical language
would have the form

ðIndÞ F½0��G½0� F½xþ1�� ðF½x�_G½xþ1�Þ F½xþ1�&G½x��G½xþ1�
F½x��G½x�

where F;G 2 L1. Let’s note that both premises and the conclusion
of the rule Ind are formulas of the language L2. On the other
hand, in the traditional formalism the rule Ind is equivalent to the
standard induction rule for the formula F � G, which contains
implications more complicated than the formulas of the language
L2:

ðIndþÞ F½0� � G½0� ðF½x� � G½x�Þ � ðF½xþ 1� � G½xþ 1�Þ
F½x� � G½x�

Indeed, the premises of the rules ðIndÞ and ðIndþÞ are equivalent in
the intuitionistic predicate calculus with Markov’s principle:

½ðF½x� � G½x�Þ � ðF½xþ 1� � G½xþ 1�Þ� $

½ðF½xþ1� � ðF½x� _G½xþ1�ÞÞ& ðF½xþ1�&G½x� �G½xþ1�Þ�:
This trick of reducing logical complexity by the implicit use of
relations to be justified later is characteristic of Markov’s con-
structive mathematics and its predecessors (intuitionism, finitism).
Markov does not explain his choice of the induction rule, but
notes in ([Markov 1966a) the impossibility of a complete calculus
for the formulas of the language L2. He also states there that
Markov’s principle holds for refutability in C2, which probably
means the admissibility of Markov’s rule. Although (Markov
1966a,b) contain no indication to the proof of the latter statement,
it is plausible that Markov had in mind the same method that was
later used to prove admissibility of Markov’s rule in the systems
with the x-rule.
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4.2. Systems with x-Rule

4.2.1 The Language L2
As already pointed out, the set of the true formulas of the language
L2 is not recursively enumerable: true formulas of the form
:9xMð$ 8x:MÞ with M containing at most bounded quantifiers
form a complete P0

1-set. The truth definition for the implications
9xM � 9xK appeals to the notion of a uniform general method or
algorithm. This notion was used in (Markov 1967a,b) to construct a
system of rules for the language L2 containing the x-rule. Informal
justification of such an approach using (what Markov called) intuition
of generality is given in (Markov 1972,x7, 1976, x2).

The rules for the language L2, similar to the rules from (Markov
(1967a (1967b) (1976)) are the intuitionistic rules for �;&;_ adapted
to avoid nested implications and the x-rule:

(R1)
F F�G

G
(R2)

F�G G�H

F�H
(R3)

G

F�G

(R4)
F�GF�H

F�G & H
(R5)

F�H G�H

F_G�H
(R6)

K L

K & L

(R7)
K & L

K
(R8)

K & L

L
(R9)

. . .I½n� �G . . .n¼ 0;1; . . .

9xI�G

Here F;G;H are L1-formulas, i.e., formulas of the language L1, K;L
are L2-formulas, 9xI is a closed L1-formula. Let’s recall that the
derivations according to these rules can use (as axioms) arbitrary true
L1-formulas. It is obvious that the rules R1–R9 are sound (or
semantically acceptable in Markov’s terminology): from true for-
mulas one can derive only true formulas.

4.2.2. Languages L3–Lx

Formulas of the arithmetical language L3, which will have the same
expressive power as the language L3 in (Markov 1967a, b, 1976) are
implications J � K of L2-formulas and arbitrary conjunctions of L3-
formulas. In other words, single nesting of implication is allowed.
The truth of an implication J ‘ K is defined as derivability J ‘ K by
the rules R1–R9 using arbitrary true L2-formulas. It turns out that
the language L3 (as well as the wider languages Ln;Lx introduced
below) is equivalent to L2, and it is sufficient to have at most one x-
rule in every branch of the derivation. Justification of that statement
is combined in (Markov 1967a, b) with the admissibility proof for
Markov’s rule. The proof is based on the following observation
which is implicit in Markov’s constructions.
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Every propositional combination of L1-formulas can be trans-
formed into a classically equivalent L2-formula, i.e., into a conjunc-
tion of implications of L1-formulas. Markov defines such a
transformation R. The main non-intuitionistic steps of R are

RððI � FÞ � GÞ ¼ ðI _ GÞ&ðF � GÞ
and

RððI � FÞ � ðH � GÞÞ ¼ ðH � I _ GÞ&ðF&H � GÞ:
Remaining steps like RðF � ðG � HÞÞ ¼ F&G � H are defined in a
natural way.
Theorem 4.2 A formula K 2 L3 is true iff the formula RðKÞ is true.
This proposition is stated in (Markov 1967a, b) only for the case
when a justification of the truth of K � L uses only a bounded
number of x-rules in every branch, but it is obviously true (together
with its proof) without this restriction. The proof is done by induc-
tion on the derivation with x-rule. The detailed proof by cases was
never published, but none of these cases presents any difficulty.
Theorem 2 amounts to completeness of the rule RðKÞ ‘ K for the
language L3. An important instance

Rðð9xM � ?Þ � ?Þ ¼ ðð9xM _ ?Þ & ð? � ?ÞÞ $ 9xM
justifies Markov’s principle.

The language Lnþ1; nþ 1 > 3 where n times nested implications
are allowed is defined in a natural way. The truth of Lnþ1-implication
is defined as derivability by the rules R1–R9 plus the rules:

(R10)
D

RðDÞ (R11)
RðDÞ
D

Then a union is formed: Lx ¼
S

n>0 Ln, and Lx is reduced to L2 by
the transformation R. Hence the truth of an Lx-formula in stepwise
semantics is the same as the truth of its translation into L2, and so it
coincides with usual arithmetic truth. In particular, familiar classical
propositional logic is valid in L2.

4.3. The Language Lxþ1

The last step made in (Markov 1967a, b) is adding initial universal
quantifiers to Lx-formulas. These quantifiers are understood in a
natural way: 8xK means that there exists a uniform general method
allowing the truth of every formula K½n� to be established. The lan-
guage Lxþ1 having the same expressive power as the language Lxþ1
from (Markov 1976) contains Lx and allows unrestricted use of 8 and
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&. The rules R1 (modus ponens), R6–R8 (introduction and elimina-
tion of &) in Section 5, which are denoted below by Pðxþ 1Þ1� 4 as
well as the rules

Pðxþ1Þ5 8xðF�BÞ
9xF�B

Pðxþ1Þ6 8xG
G½n� Pðxþ1Þ7 ...G½n�...

8xG
are sound for Lxþ1. It is easy to see that this system of rules denoted
below by Pðxþ 1Þ is also complete for deriving true Lxþ1-formulas
from the true Lx-formulas, and it is possible to have a finite bound
for the number of x-rules in any branch: the bound is the maximum
nesting of universal quantifiers. Indeed, a true conjunction is ob-
tained by the rule R8, a true 8-formula is obtained by the x-rule, and
in this way every true Lxþ1-formula is reduced to true Lx-formulas
which are initial (axioms). Since this reduction preserves equivalence
in a traditional sense, stepwise semantics coincides with traditional
truth for Lxþ1-formulas.

4.4. Languages Lxþn; n 	 2

The language Lxþ1 corresponds exactly to the level P0
2 of the arith-

metical hierarchy. The next step increases the complexity by 1. Its
iteration leads to formulas with arbitrary nesting of implications and
universal quantifiers, so that all almost negative formulas are obtained.

The formulas of the language Lxþnþ1; n > 0 are constructed from
Lxþn-formulas by one application of implication and by unrestricted
application of &;8 to such implications. In fact, Markov used � N to
indicate the level-N implication, but we drop N. Semantics is defined
as before: 8xF means availability of a uniform general method
making it possible to establish the truth of every formula F½n�. An
implication A � B where A;B 2 Lxþn means derivability A ‘ B by
the rules Pxþn described below (using arbitrary true Lxþn-formulas).
The rules Pxþn for n > 1 include (modulo technical details) the rules
R1–R4, R6–R8 from section 4.2.1 (modus ponens, the transitivity of
implication, adding a redundant premise, introduction of conjunction
into the conclusion of an implication, introduction and elimination of
conjunction) as well as the following rules:

. . .A�G½n� . . .
A� 8xG 8þ . . .H½n� . . .

8xH 8þ 8xH
H½n� 8

� A&I� B

A�RðI;BÞ ðexp Þ

where RðI;BÞ for I 2 Lxþn�2;B 2 Lxþn�1 is the result of transform-
ing an implication A � ðB � CÞ into a Lxþn-formula by moving
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universal quantifiers and conjunctions forward and replacing
A � ðB � DÞ by A & B � D. In other words, the rule ðexpÞ replaces
exportation A & I � B ‘ A � ðI � BÞ which has a conclusion outside
the language Lxþn. In fact, the rules Pxþn were stated for the
implication � ðN� 1Þ and are admissible for implications
�M ðM < N� 1Þ. We do not stress these distinctions. It is easy to
see that the rules Pxþn are sound both for n ¼ 1 and for n > 1. It is
possible to show that they are complete: every formula of the lan-
guage Lxþnþ1; n 	 1 which is true in the traditional sense is also true
in stepwise semantics. We only sketch the argument to clarify the role
of every rule. Let us note that an arbitrary Lxþnþ1-formula is reduced
to implications of Lxþn-formulas by analyzing it using the rules of &-
and 8-introduction. For example, a formula K&L is true iff both K
and L are true. The completeness proof is concluded by the following
assertion.

LEMMA 4.3. If n 	 1 and the formula A � B where A;B 2 Lxþn is
true in the traditional sense, then A ‘ B by the rules Pxþn.
Proof. Analysis using the rules of &- and 8-elimination makes it
possible to reduce our task (non-constructively) to deriving the
relation below, which is true in the traditional sense:

E � F ‘ G � H; ð6Þ
where E;F;G;H 2 Lxþn�1. One can assume that the formula G � H
is false, since otherwise (6) is an axiom. Then E � F is false too, and
hence E is true and F is false. For example, if a formula A ¼ 8xD is
false, then for some n the formula D½n� is false and A ‘ D½n� by 8-
elimination. The formula F � H 2 Lxþn is true and for n 	 2 the
required derivation is as follows:

E�F E
F F � H

H
G�H

For n ¼ 1 the true formula ðE � FÞ � ðG � HÞ is in Lx, and hence (6)
is obtained by the rule Pðxþ 1Þ1 (modus ponens ), which concludes
the argument.

A more constructive proof for the equivalence of stepwise and
traditional semantics would use natural deduction calculus with x-
rule as an equivalent of traditional semantics, and induction on the
normal (cut-free) proofs in this calculus (cf. Dragalin 1980; Mints
1983). Note that the rule Pðxþ 1Þ9 is not used in our proof, and as
noted by Gimon (1973), Markov showed that this rule can be omitted.
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4.5. Languages L2x;L2xþ1

The language L2x from (Markov (1976)) is the union of all
Lxþn; n 	 0, and under the traditional interpretation it coincides
with the language of classical arithmetic. In particular, for every
formula A 2 L2x, the formula ::A � A is true in stepwise
semantics. Hence the classical propositional calculus is sound both
for L2x and for the language L2x ¼

S
n Lxþn. The arithmetical

language L2xþ1 corresponding to the language L2xþ1 from (Markov
(1976)) is simply the language of first order arithmetic. All logical
connectives &;_;�; 8; 9 can be applied here without restrictions.
This language is reduced to the language L2x (and hence to one of
Lxþn; n 	 0) by ‘‘elucidation of the constructive problem’’. Arbi-
trary sentences A are transformed by an algorithm SH (Section 1)
into a formula 9xA0ðxÞ where A0ðxÞ 2 L2x, and then the truth of A
is defined as the existence of a natural number n such that A0ðnÞ is
true.

This concludes our description of Markov’s stepwise semantics.

4.6. Further Work

In his papers published in Doklady Akad. Nauk SSSR 214, 1974
(English translation in Soviet Mathematics, Doklady 15, 1974),
Markov presented a new version of stepwise semantics equivalent to
one in (Markov 1976).

The work of Markov on stepwise semantics was continued by his
students. They studied extensions of the language of arithmetic
contained in the language of ramified analysis, where the language of
a rank r allows quantifiers over sets definable by formulas of lower
rank. Semantics which were obtained in this way turned out to be
equivalent to the traditional semantics.

Dragalin (1972) proved that the levels of stepwise semantics form
a strict hierarchy. Kanovich (1975) extended stepwise semantics to
languages with quantifiers over arithmetical sets. Burgina (1984)
sketched an extension of stepwise semantics to ramified analysis of all
finite ranks. The truth of the formula 8xA with a variable x of rank r
is defined as the truth of all substitution instances A½x=qxB� where
qxB is a closed abstract of a rank � r. M. Dombrowskii-
Kabanchenko (1979) extends stepwise semantics to all constructive
levels: he constructs languages Lx for all x 2 O, so that every
hyperarithmetical set is representable in one Lx.
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NOTE

1The Russian version of this section was written as a comment to several papers,

most of them published by Nauka Publishers, Moscow in the Collected Works of
Markov (Markov 2002).
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MICHAEL RATHJEN

THEORIES AND ORDINALS IN PROOF THEORY

ABSTRACT. How do ordinals measure the strength and computational power of
formal theories? This paper is concerned with the connection between ordinal rep-
resentation systems and theories established in ordinal analyses. It focusses on results
which explain the nature of this connection in terms of semantical and computa-

tional notions from model theory, set theory, and generalized recursion theory.

1. INTRODUCTION

A central theme running through proof theory is the classification of
theories by means of ordinals. This is manifest in the assignment of
‘proof theoretic ordinals’ to theories, gauging their ‘consistency
strength’ and ‘computational power’. To put it roughly, such ordinal
analyses attach ordinals in a given representation system to formal
theories.

The present paper gathers together results which explain the nat-
ure of the connection between ordinal representation systems and
theories established in ordinal analyses by a more semantical ap-
proach in that it characterizes these ordinals in terms of familiar
notions from model theory, set theory, and generalized recursion
theory.

2. MEASURES IN PROOF THEORY

2.1. Gentzen’s Result

Gentzen showed that transfinite induction up to the ordinal

e0 ¼ supfx;xx;xxx
; . . .g ¼ least a: xa ¼ a

suffices to prove the consistency of Peano Arithmetic (PA). To
appreciate Gentzen’s result it is pivotal to note that he applied
transfinite induction up to e0 solely to primitive recursive predicates
and besides that his proof used only finitistically justified means.
Hence, a more precise rendering of Gentzen’s result is
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Fþ PR-TIðe0Þ ‘ ConðPAÞ; ð1Þ
where F signifies a theory that is acceptable in finitism (e.g.,
F ¼ PRA ¼ Primitive Recursive Arithmetic) and PR-TI(e0) stands
for transfinite induction up to e0 for primitive recursive predicates.
Gentzen also showed that his result is best possible in that PA proves
transfinite induction up to a for arithmetic predicates for any a < e0.
The compelling picture conjured up by the above is that the non-
finitist part of PA is encapsulated in PR-TI(e0) and therefore ‘‘mea-
sured’’ by e0, thereby tempting one to adopt the following definition
of proof-theoretic ordinal of a theory T:

jTjCon ¼least a: PRAþ PR-TIðaÞ ‘ ConðTÞ: ð2Þ
The foregoing definition of jTjCon is, however, inherently vague be-
cause the following issues have not been addressed:

• How are ordinals to be represented in PRA?
• (2) is definitive only with regard to a prior choice of ordinal

representation system.
• Different ordinal representation systems may provide different

answers to (2).

Notwithstanding that, for ‘natural’ theories T and with regard to a
‘natural’ ordinal representation system, the ordinal jTjCon encapsu-
lates important information about the proof strength of T.

The next section will introduce a notion of proof-theoretic ordinal,
jTjsup, which does not hinge on the choice of a particular ordinal
representation system.

3. THE GENERAL FORM OF AN ORDINAL ANALYSIS

In this section I attempt to say something general about all ordinal
analyses that have been carried out thus far. One has to bear in mind
that these concern ‘natural’ theories. Also, to circumvent countless
and rather boring counter examples, I will only address theories that
have at least the strength of PRA.

3.1. Theories

Ordinal analysis is concerned with theories serving as frameworks for
formalizing parts of mathematics. It is known that virtually all of
ordinary mathematics can be formalized in Zermelo–Fraenkel set
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theory with the axiom of choice (ZFC). Hilbert and Bernays (1938)
showed that large chunks of mathematics can already be formalized
in second order arithmetic. Owing to these observations, proof theory
has been focusing on set theories and subsystems of second order
arithmetic.

3.1.1. Subsystems of Second-order Arithmetic
The language L2 of second-order arithmetic contains (free and
bound) number variables a; b; c; . . . ; x; y; z; . . . , (free and bound) set
variables A;B;C; . . . ;X;Y;Z; . . . , the constant 0, function symbols
Suc ;þ; �, and relation symbols ¼; <;2. Suc stands for the successor
function.

Terms are built up as usual. For n2N, let �n be the canonical term
denoting n. Formulae are built from the prime formulae s ¼ t, s < t,
and s 2 A using ^;_;:; 8x;9x;8X and 9X where s; t are terms.

Note that equality in L2 is only a relation on numbers. However,
equality of sets will be considered a defined notion, namely

A ¼ B iff 8x½x2A$ x2B�:
As usual, number quantifiers are called bounded if they occur in the
context 8xðx < s! . . .Þ or 9xðx < s ^ . . .Þ for a term s which does
not contain x. The D0

0-formulae are those formulae in which all
quantifiers are bounded number quantifiers, R0

k-formulae are for-
mulae of the form 9x18x2 . . .QxkF, where F is D0

0, P0
k-formulae are

those of the form 8x19x2 . . .QxkF. The union of all P0
k- and R0

k-
formulae for all k 2 N is the class of arithmetical or P0

1-formulae.
The R1

k-formulae (P1
k-formulae) are the formulae 9X18X2 . . .QXkF

(resp. 8X19X2 . . .QxkF) for arithmetical F.
The basic axioms in all theories of second-order arithmetic are the

defining axioms of 0; 1;þ; �; < and the induction axiom

8Xð0 2 X ^ 8xðx 2 X! xþ 1 2 XÞ ! 8xðx 2 XÞÞ;
respectively the schema of induction

IND Fð0Þ ^ 8xðFðxÞ ! Fðxþ 1ÞÞ ! 8xFðxÞ;
where F is an arbitrary L2-formula.

We consider the axiom schema of C-comprehension for formula
classes C which is given by

C � CA 9X8uðu 2 X$ FðuÞÞ
for all formulae F 2 C in which X does not occur.
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For each axiom schema Ax we denote by (Ax) the theory con-
sisting of the basic arithmetical axioms, the schema P0

1 � CA, the
schema of induction and the schema Ax. If we replace the schema of
induction by the induction axiom, we denote the resulting theory by
(Ax)�.

An example for these notations is the theory ðP1
1 � CAÞ which

contains the induction schema, whereas ðP1
1 � CAÞ� only contains

the induction axiom in addition to the comprehension schema for P1
1-

formulae.
In the framework of these theories one can introduce defined

symbols for all primitive recursive functions. Especially, let
h;i: N� N �! N be a primitive recursive and bijective pairing func-
tion.

The xth section of U is defined by Ux :¼ fy : hx; yi2Ug. Observe
that a set U is uniquely determined by its sections on account of h;i’s
bijectivity.

Any set R gives rise to a binary relation �R defined by
y �R x :¼ hy; xi2R.

Using the latter coding, we can formulate the axiom of choice for
formulae F in C by

C �AC 8x9YFðx;YÞ ! 9Y8xFðx;YxÞ:
A special form of comprehension is D1

n-comprehension, that is

D1
n � CA 8u

�
/ðuÞ $ #ðuÞ

�
! 9X8uðu2X$ /ðuÞÞ

for all P1
n-formulae / and R1

n-formulae #.
Bar induction is the schema

BI 8X
�
WFð�XÞ ^ 8u

�
8v�X u/ðvÞ ! /ðuÞ

�
!8u/ðuÞ

�

for all formulae /, where WFð�XÞ expresses that �X is well-founded
(see Definition 3.4).

3.1.2. Subsystems of Set Theory
The axiom systems for set theory considered in this paper are for-
mulated in the usual language of set theory (called L2 hereafter)
containing 2 as the only non-logical symbol besides ¼. Formulae are
built from prime formulae a 2 b and a ¼ b by use of propositional
connectives and quantifiers 8x; 9x. Bounded quantifiers 8x 2 a,
9x 2 a are defined as usual. D0-formulae are the formulae wherein all
quantifiers are bounded; R1-formulae are those of the form 9xuðxÞ
where uðaÞ is a D0-formula. For n > 0, Pn-formulae (Rn-formulae)
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are the formulae with a prefix of n alternating unbounded quantifiers
starting with a universal (existential) one followed by a D0-formula.
The class of R-formulae is the smallest class of formulae containing
the D0-formulae which is closed under ^, _, bounded quantification
and unbounded existential quantification.

One of the set theories which is amenable to ordinal analysis is
Kripke–Platek set theory (KP). Its standard models are called
admissible sets. One of the reasons that this is a truly remarkable
theory is that a great deal of set theory requires only the axioms of
KP. An even more important reason is that admissible sets have been
a major source of interaction between model theory, recursion theory
and set theory (cf. Barwise 1975). KP arises from ZF by completely
omitting the power set axiom and restricting separation and collec-
tion to absolute predicates (cf. Barwise 1975), i.e., D0 formulas. These
alterations are suggested by the informal notion of ‘predicative’.

DEFINITION 3.1. The axioms of KP are:

Extensionality: 8xðx2a$ x2bÞ! a¼ b:

Foundation: 8x½ð8y2xÞGðyÞ!GðxÞ�!8xGðxÞ
for all formulae G:

Pair: 9 x ðx¼fa;bgÞ:
Union: 9x ðx¼

[
aÞ:

Infinity: 9x
�
x 6¼ ; ^ ð8y2xÞð9z2xÞðy2zÞ

�
:1

D0Separation: 9x
�
x¼fy2a :FðyÞg

�2

for allD0-formulas F

in whichxdoes not occur free.

D0Collection: ð8x2aÞ9yGðx;yÞ!9zð8x2aÞð9y2zÞGðx;yÞ
for all D0-formulasG

in which z does not occur free.

La, the ath level of Gödel’s constructible hierarchy L, is defined by
L0 ¼ ;, Lbþ1 ¼

�
X : X � Lb; X definable over hLb;2i

�
and Lk ¼S

fLb : b < kg for limits k. So any element of L of level a is definable
from elements of L with levels < a and La.

A transitive set A such that ðA;2Þ is a model of KP is called an
admissible set. An ordinal a is admissible if the structure ðLa;2Þ is a
model of KP.
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Some systems of set theories will be used later for illustrative
purposes. KPi is an extension of KP via the axiom

ðLimÞ 8x9y½x2y ^ y is an admissible set�:
KPl denotes the system KPi without D0 Collection. KPlr and KPir

arise from KPl and KPi, respectively, by restricting the scheme of
Foundation to D0-formulae G.

KPiw is obtained from KPir by adding the schema

INDx 8x 2 xð8y 2 xFðyÞ ! FðxÞÞ ! 8x 2 xFðxÞ
of induction on x for all formulae F.

The foregoing set theories are closely related to well-studied sub-
systems of second-order arithmetic. KPlr, KPl, KPiw, and KPi prove
the same sentences of second-order arithmetic as ðP1

1 � CAÞ ,
ðP1

1 � CAÞ þ BI, ðD1
2 � CAÞ, and ðD1

2 � CAÞ þ BI, respectively.

3.2. Proof-Theoretical Reductions

Ordinal analyses of theories allow one to compare the strength of
theories. This subsection defines the notions of proof-theoretic
reducibility and proof-theoretic strength that will be used henceforth.

All theories T considered in the following are assumed to contain a
modicum of arithmetic. For definiteness let this mean that the system
PRA of Primitive Recursive Arithmetic is contained in T, either di-
rectly or by translation.

DEFINITION 3.2. Let T1, T2 be a pair of theories with languages
L1 and L2, respectively, and let U be a (primitive recursive) collection
of formulae common to both languages. Furthermore, U should
contain the closed equations of the language of PRA.

We then say that T1 is proof-theoretically U-reducible to T2, written
T1 �U T2, if there exists a primitive recursive function f such that

PRA ‘ 8/ 2 U8x½ProofT1
ðx;/Þ ! ProofT2

ðfðxÞ;/Þ�:
ð3Þ

T1 and T2 are said to be proof-theoretically U-equivalent, written
T1 �U T2, if T1 �U T2 and T2 �U T1.

The appropriate class U is revealed in the process of reduction
itself, so that in the statement of theorems we simply say that T1 is
proof-theoretically reducible to T2 (written T1 � T2) and T1 and T2

are proof-theoretically equivalent (written T1 � T2), respectively.
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Alternatively, we shall say that T1 and T2 have the same proof-the-
oretic strength when T1 � T2.

REMARK 3.3. Feferman’s notion of proof-theoretic reducibility in
(Feferman 1988) is more relaxed in that he allows the reduction to be
given by a T2-recursive function f, i.e.,

T2 ‘ 8/ 2 U8x½ProofT1
ðx;/Þ ! ProofT2

ðfðxÞ;/Þ�: ð4Þ
The disadvantage of (4) is that one forfeits the transitivity of the
relation �U. Furthermore, in practice, proof-theoretic reductions al-
ways come with a primitive recursive reduction, so nothing seems to
be lost by using the stronger notion of reducibility.

3.3. jTjsup
Before delineating the general form of an ordinal analysis, we need
several definitions.

DEFINITION 3.4. Let T be a framework for formalizing a certain
part of mathematics. T should be a true theory (i.e., all its theorems
are true) which contains a modicum of arithmetic.

Let A be a subset of N ordered by � such that A and � are both
definable in the language of T. If the language of T allows for
quantification over subsets of N, like that of second order arithmetic
or set theory, well-foundedness of hA;�i will be formally expressed by

WFðA;�Þ :¼ 8X � N½8u2Að8v � uv2X! u2XÞ
! 8u2Au2X�;

ð5Þ

where 8v � u . . . is short for 8vðv � u! . . .Þ. If, however, the lan-
guage of T does not provide for quantification over arbitrary subsets
of N, like e.g., that of PA, we shall assume that it contains a new
unary predicate U. U acts like a free set variable, in that no special
properties of it will ever be assumed. We will then resort to the
following formalization of well-foundedness:

WFðA;�Þ :¼8u2Að8v � uUðvÞ ! UðuÞÞ ! 8u2AUðuÞ:
ð6Þ

We shall use WFð�Þ as an abbreviation for WFðN;�Þ. We also set

WOðA;�Þ :¼LOðA;�Þ ^WFðA;�Þ: ð7Þ
If hA;�i is well-founded, we use j�j to signify its set-theoretic order-
type. For a2A, the ordering � �a denotes the restriction of � to
fx2A : x � ag.
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The ordering hA;�i is said to be provably well-ordered in T if

T ‘WOðA;�Þ: ð8Þ
The supremum of the provable well-orderings of T, jTjsup, is defined
as follows:

jTjsup :¼ sup
�
a : a provably recursive in T

�
ð9Þ

where an ordinal a is said to be provably recursive in T if there is a
recursive well-ordering hA;�i with order-type a such that

T ‘ WOðA;�Þ
with A and � being provably recursive in T. Note that, by definition,
jTjsup � xCK

1 , where xCK
1 is the supremum of the order-types of all

recursive well-orderings on N. Another characterization of xCK
1 is

that it is the least admissible ordinal > x.

AGREEMENT. From now on the proof-theoretic ordinal of a
theory T is taken to be jTjsup.

3.4. The Robustness of jTjsup
This subsection gathers together several results which show that there
is a lot of leeway in defining jTjsup. Instead of recursive well-orderings
we could have restricted ourselves to primitive recursive or even
elementary recursive well-orderings. On the other hand it is also
possible to go into the other direction by allowing for well-orderings
of greater complexity.

The statements below involve certain well known subsystems of
PA and second order arithmetic. IR1 denotes the fragment of PA
obtained by restricting induction to R1 formulas. WKL0 is a fragment
of second-order arithmetic whose main set existence axiom is a ver-
sion of König’s lemma restricted to binary trees. WKL0 is proof-
theoretically of the same strength as IR1, and thus weaker than PA.

For an exact definition and the role of these theories in the pro-
gram of Reverse Mathematics see Simpson (1999).

PROPOSITION 3.5.

(i) Suppose that for every elementary well-ordering hA;�i, when-
ever T ‘ WOðA;�Þ, then

T ‘ 8u½AðuÞ ^ 8v � uPðvÞ ! PðuÞ� ! 8u½AðuÞ ! PðuÞ�
holds for all provably recursive predicates P of T. Then
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jTjsup ¼ sup
�
a : a is provably elementary in Tg ð10Þ

¼ sup
�
a : a is provably R0

1 in Tg:
Moreover, if T ‘WOðA;�Þ and A;� are provably recursive in
T, then one can find an elementary well-ordering hB;Ui and a
recursive function f such that T ‘WOðB;UÞ, f is provably
recursive in T, and T proves that f supplies an order isomor-
phism between hB;Ui and hA;�i.
Examples for (i) are the theories IR1, WKL0 and PA.

(ii) If T contains ðP0
1 � CAÞ�, then

jTjsup ¼ sup
�
a : a is provably arithmetic in Tg: ð11Þ

(iii) If T contains ðR1
1 �ACÞ�, then

jTjsup ¼ sup
�
a : a is provably analytic in Tg; ð12Þ

where a relation on N is called analytic if it is lightface R1
1.

Proof. (Rathjen 1999), Proposition 2.19. (

A theory is said to be P1
1-faithful if all of its theorems of com-

plexity P1
1 are true.

THEOREM 3.6. Let T be a R1
1 axiomatizable theory.

(i) If T is P1
1-faithful, then jTjsup < xCK

1 .
(ii) If ðP0

1 � CAÞ � T and jTjsup < xCK
1 , then T is P1

1-faithful.
(iii) There are consistent primitive recursive theories T such that
jTjsup ¼ xCK

1 .

Proof. See Rathjen (1999), Theorem 2.4. (

As Kreisel observed, another feature of jTjsup is that this ordinal
does not change when one augments T by true R1

1 statements.

PROPOSITION 3.7. Let T be a primitive recursive, P1
1-faithful

theory of second order arithmetic such that PA � T. Let / be a
primitive recursive well-ordering such that jTjsup ¼ j/j and

PAþ TIð/Þ ‘ ProofTðpFqÞ ! F ð13Þ
holds for all arithmetic formulae F which may contain free second
order set variables but no free number variables. Then, for any true
R1
1 statement B,

jTjsup ¼ jTþ Bjsup:

Proof. See Rathjen (1999), Proposition 2.6.
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REMARK 3.8. In all the examples I know, if T is a subsystem of
classical second order arithmetic for which an ordinal analysis has been
carried out via an ordinal representation system ðA; /Þ, (13) is satisfied.

4. MODEL-THEORETIC CHARACTERIZATIONS

This first part of this section shows that jTjsup can be couched in
terms of partial models in the constructible hierarchy. The second
part presents Carlson’s approach of obtaining ordinal representations
from finite structures.

4.1. Partial Models

Recall that La, the ath level of Gödel’s constructible hierarchy L, is
defined by L0 ¼ ;, Lbþ1 ¼

�
X : X � Lb; X definable over hLb;2i

�

and Lk ¼
S
fLb : b < kg for limits k. So any element of L of level a is

definable from elements of L with levels < a and La.

DEFINITION 4.1. For a collection of sentences (in the language of
set theory), F , we say that La is an F -model of T if for all B 2 F ,
whenever T ‘ B, then La 	 B. Let

jTjF :¼ Lais an F -model ofTg:
Suppose an ordinal d is definable by a formula DðxÞ in T, that is
T ‘ 9!nDðnÞ and DðdÞ is true. Let T ‘ BLd stand for
T ‘ 9n½DðnÞ ^ BLn �. La is said to be an FðLdÞ model of T if whenever
T ‘ BLd holds for B 2 F , then La 	 B. For interesting ordinals d and
theories T it is often fruitful to consider the following ordinal:

jTjFðLdÞ :¼minfa : La is an FðLdÞ-model of Tg:

DEFINITION 4.2. Let F be a collection of sentences. A set theory T
is said to be F -sound with respect to L if for every F theorem / of T,
L 	 / holds.3 For the sake of brevity, in what follows I shall use the
shorthand ‘‘F -sound’’ rather than ‘‘F -sound with respect to L’’.

The systemPRST (forPrimitive Recursive Set Theory) is formulated
in the language of set theory augmented by symbols for all primitive
recursive set functions in the sense of Jensen and Karp (Jensen and
Karp 1971). The axioms of PRST are Extensionality, Pair, Union,
Infinity, D0-Separation, the Foundation Axiom (i.e., x 6¼ ; ! ð9y2xÞ
ð8z2yÞz j2x) and the defining equations for the primitive recursive set
functions (see (Rathjen 1992) for a precise definition).
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In the following we shall assume that all set theories contain PRST
either directly or via interpretation.

The next theorem gives a characterization of the proof-theoretic
ordinal of T in terms of jTjF for two classes of formulae. It requires,
however, that T proves the existence of xCK

1 . Recall that xCK
1 stands

for the least admissible ordinal > x. There is a canonical P3-sentence
h of set theory such that for every a > 0, La 	 h iff La is an admissible
set (cf. Richter and Aczel 1973). We will say that T proves the exis-
tence of xCK

1 if T ‘ 9a > xhLa .

THEOREM 4.3. If T is P2-sound and T proves the existence of xCK
1 ,

then

jTjsup ¼ jTjR1ðLðxCK
1
ÞÞ ¼ jTjP2ðLðxCK

1
ÞÞ:

Proof. The equality jTjsup ¼ jTjR1ðLðxCK
1
ÞÞ follows from (Rathjen

1991), Theorem 7.14.
jTjR1ðLðxCK

1
ÞÞ ¼ jTjP2ðLðxCK

1
ÞÞ is an immediate consequence of the

proof of (Rathjen (1992), Theorem 2.1. (

An ordinal analysis of T also allows one to determine the ordinals
jTjR1

and jTjP2
. This will be addressed in more detail in the last

section. In point of fact, these ordinals are the same if T satisfies some
mild requirements.

PROPOSITION 4.4. Suppose T is P2 sound and contains D0-col-
lection. Furthermore, suppose that T‘B implies T ‘ 9a9x ðx¼
La ^ BxÞ for all R1-sentences B. If T has a R1-model then T has a P2-
model and

jTjR1
¼jTjP2

: ð14Þ
Proof. (Rathjen (1992). Theorem 2.1. (

There are theories where jTjR1
and jTjsup coincide. A prominent

example is KP. The ordinal wXðeXþ1Þ is known as the Bach-
mann–Howard ordinal.

THEOREM 4.5. jKPjsup ¼ jKPjR1
¼ jKPjP2

¼ wXðeXþ1Þ.
Proof. See (Jäger 1982) and (Rathjen 1992). (

4.2. Patterns of Resemblance

An intriguing new way of defining ordinal representation systems has
been pursued by Carlson (cf. Carlson 1999, 2001). In this approach
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the class of ordinals gets furnished with a relation of 91 elementary
substructurehood and the ordinal representations correspond to finite
substructures of this class structure.

DEFINITION 4.6. Suppose A ¼ ðORD; . . . ;�Þ is a (class) struc-
ture whose universe is the class of ordinals ORD, with the ordering �
of ordinals. A finite substructure F of A is said to be isominimal if
there is no finite substructure F0 of A such that

• F0 � F
• F0 6¼ F
• F0 �pw F,

where �pw denotes the pointwise partial ordering of finite sets of
ordinals, i.e., F0 �pw F iff both structures have the same number of
elements and if a0; . . . ; an�1 enumerates the elements of F0 in
increasing order and b0; . . . ; bn�1 enumerates the elements of F in
increasing order then ai � bi for i < n.

Since the definition of R1 formula in the usual set-theoretic sense
allows arbitrary bounded quantifiers inside the initial existential
quantifiers, we specify that a 91 formula is a quantifier-free formula
prefixed by a string of existential quantifications.

The core of A is the union of the isominimal substructures of A.
Carlson (1999) introduces a structure R0 whose core turns out to

be the ubiquitous ordinal e0.

DEFINITION 4.7. 
0
1 is the partial ordering on the class of ordinals

defined by induction so that

a 
0
1 b iff ða; 0;�;
0

1Þ is a 91-elementary

substructure of ðb; 0;�;
0
1Þ:

To be more precise, by induction on b we define the set of a such that
a 
0

1 b (note that we have taken some liberty in writing ða;�;
0
1Þ

where we should have restricted the relations to a).

THEOREM 4.8. (Carlson 1999). The core of R0 is the ordinal e0.
Augmenting the ordinals by the function of addition, Carlson

(2001) introduces a richer structureR1 whose core turns out to be the
proof-theoretic ordinal of ðP1

1 � CAÞ� .

DEFINITION 4.9. 
1
1 is the partial ordering on the class of ordinals

defined by induction so that
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a 
1
1 b iff ða; 0;þ;�;
1

1Þ is a 91-elementary

substructure of ðb; 0;þ;�;
0
1Þ:

It should be pointed out that contrary to standard practice, one al-
lows structures to interpret þ as a partial operation on the universe,
e.g., if b; c < a but bþ c � a then þ is not defined for the arguments
b; c in the structure ða; 0;þ;�;
1

1Þ.
THEOREM 4.10 (Carlson 2001). The core of R1 is wX1

Xx (in the
notation of Buchholz 1986), the proof-theoretic ordinal of
ðP1

1 � CAÞ� .
To give an idea of how the core of R1 gives rise to a recursive

ordinal representation system we need some notions. A substructure
B of R1 is closed if 0 2 B and whenever xa1 þ � � � þ xam is in B with
a1 � � � � � am then xa1 ; . . . ;xam 2 B and xa1 þ � � � þ xai 2 B for
i ¼ 1; . . . ;m. Notice that every finite set of ordinals is contained in a
finite set of ordinals which is closed.

It can be shown that for a fixed finite closed substructure F of R1,
there is a unique isominimal substructure F� of R1 which is iso-
morphic to F. Moreover, F� is closed. This provides a system of
ordinal representations for the ordinals which occur in the core ofR1:
if a appears as the nth element of some closed isominimal substruc-
ture F� of R1 we can use the pair ðs; nÞ as a notation for a where s is
the isomorphism type of F�. These notations allow one to show that
the core of R1 is isomorphic to a recursive structure.

REMARK 4.11. At first glance, the difference between the struc-
tures R0 and R1 seems only tiny as the operation of addition on
ordinals appears to be innocent enough. A similar effect, though, has
also been unearthed in a paper by Schütte and Simpson (Schütte and
Simpson 1985) wherein they showed that omitting the operation +
from the ordinal representation system for the proof-theoretic ordinal
of ðP1

1 � CAÞ has a dramatic effect in that the order-type drops to e0.

REMARK 4.12. Carlson has also considered richer structures than
R1 whose cores are conjectured to provide ordinal representations for
very strong subsystems of second order arithmetic.

5. CHARACTERIZATIONS VIA E-RECURSION

A particularly interesting measure that can be assigned to a set
theory T is jTjE. Here the superscript E signifies E-recursion, also
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termed set recursion. E-recursion theory extends the notion of com-
putation from the natural numbers to arbitrary sets. For details see
Sacks (1990).

DEFINITION 5.1. The intent is to assign meaning to fegðxÞ for
every set x via an appropriate notion of computation. The definition
of fegðxÞ is in terms of schemes introduced by Normann (1978), and
subsequently and independently by Moschovakis (1976). The first
three schemes are projection, difference and pairing. The fifth is
composition, and the sixth is enumeration. Bounding with union, the
fourth scheme, is the sole source of infinitely long computations. To
be precise, E-recursion is defined by the following schemes:

1.
e ¼ h1; n; ii;
fegðx1; . . . ; xnÞ ¼ xi:

2.
e ¼ h2; n; i; ji;
fegðx1; . . . ; xnÞ ¼ xinxj:

3.
e ¼ h3; n; i; ji;
fegðx1; . . . ; xnÞ ¼ fxi;xjg:

4.
e ¼ h4; n; ci;
fegðx1; . . . ;xnÞ ’

S
ffcgðy;x2; . . . ; xnÞ : y2x1g:

The left side is not defined unlessfcgðy;x2; . . . ; xnÞ
is defined for all y 2 x1:

5.
e ¼ h5; n;m; e0; e1; . . . ; eni;
fegðx1; . . . ;xnÞ ’ fe0gðfe1gðx1; . . . ; xnÞ; . . . ; femgðx1; . . . ;xnÞÞ:

6.
e ¼ h6; n;mi;
fegðe1;x1; . . . ; xn; y1; . . . ; ymÞ ’ fe1gðx1; . . . ;xnÞ:

’ is Kleene’s symbol for strong equality. If g and f are partial
functions, then fðxÞ ’ gðxÞ iff neither fðxÞ nor gðxÞ is defined, or fðxÞ
and gðxÞ are defined and equal.

To some, enumeration is a theorem, not a scheme. Casting it as a
scheme makes it possible to omit the least number operator and
primitive recursion, two schemes well abandoned when there is no
underlying effective wellordering of the sets.

DEFINITION 5.2. A partial function from V, the class of all sets,
into V is partial E-recursive if it belongs to the least class of partial
functions closed under the Normann schemes. The graph of such a
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function is R1 (in the language of set theory), the converse, however,
does not hold. An example is OðxÞ, Gödel’s order of constructibility
function

OðxÞ ’lc½x2Lcþ1nLc�:
OðxÞ is R1 but not partial E-recursive. If x2L then OðxÞ is found by
an unbounded search devoid of effective content.

A theorem of van de Wiele (1982) explains the gap between R1

definability and partial E-recursiveness.

DEFINITION 5.3. Let f : V! V be a total function. F is uniformly
R1 definable on every admissible set if there is a R1 formula /ðx; yÞ
(which contains at most the free variables exhibited) such that for
every admissible set A:

�ð8x2AÞfðxÞ2A;
�f �A ¼ fha; bi : hA;2i 	 /ða; bÞg:

THEOREM 5.4 (van de Wiele 1982). For every total function
f : V! V the following are equivalent:

(i) f is E-recursive.
(ii) f is uniformly R1 definable on every admissible set.

DEFINITION 5.5. The next notions are due to A. Schlüter (1993).

jTjER1
:¼minfa : for all e 2 x; T ‘ fegðxÞ # implies

fegðxÞ 2 Lag:
jTjEP2

denotes the ordinal

minfa > x : for all e 2 x; T ‘ 8xfegðxÞ # implies

8x2LafegðxÞ 2 Lag:
For the remainder of this subsection it is assumed that all set theories
contain PRST.

THEOREM 5.6 (Schlüter 1993). If T is a P2 sound theory, then

jTjER1
¼jTjEP2

: ð15Þ

Proof. (15) is stated and proved in Schlüter (1993, 6.14). (

THEOREM 5.7 (Schlüter 1993). If T is P2-sound, then
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jTjsup ¼ jTj
E
R1
¼ jTjEP2

:

Proof. A detailed proof of jTjER1
¼ jTjsup can be found in Schlüter

(1993), Satz 6.15. (
In point of fact, the proof of Theorem 5.6 also yields the following

result.

THEOREM 5.8. If T is a P2 sound theory, then

jTjsup ¼ fa : 9e2x½a ¼ fegðxÞ ^ T ‘ fegðxÞ #�g:

6. THE R1 SPECTRUM OF A THEORY

The extraction of classifications of provable functions from ordinal
analyses is not confined to recursive functions on natural numbers. In
the case of fragments of second order arithmetic, one may also
classify the provable hyperarithmetical as well as the provable D1

2

functions on N. Such results can be obtained by interpreting the
ordinals of the representation system used in the pertaining ordinal
analysis as large admissible ordinals (see Section 7). In the case of set
theories one may classify several kinds of provable set functions and
ordinals.

In the following we will be concerned with norms that can be
assigned to set theories. In general, they can also be extracted from an
ordinal analysis of a set theory T. Among other results, they lead to a
classification of the provable set functions of T.

DEFINITION 6.1. Another notion that is closely related to the
norm jTjR1

is the notion of good R1-definition from admissible set
theory (see Barwise 1975, II.5.13). Given a set theory T, we say that
an ordinal a has a good R1-definition in T if there is a R1-formula /ðuÞ
such that

L 	 /½a� andT ‘ 9!n/ðnÞ:
Let

specR1
ðTÞ :¼ fa : a has a good R1 definition in Tg:

If T is R1 sound one obviously has supðspecR1
ðTÞÞ ¼ jTjR1

. In many
cases the set specR1

ðTÞ bears interesting connections to the ordinals
of the representation system that has been used to analyze T. Ordinal
representation systems that have been developed via a detour through
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large cardinals allow for an alternative interpretation wherein the
large cardinals are replaced by their recursively large counterparts.
The latter interpretation gives rise to a canonical interpretation of the
ordinal terms of the representation system in specR1

ðTÞ. In general,
however, the ordinals of specR1

ðTÞ stemming from the ordinal rep-
resentation form a proper subset of specR1

ðTÞ with many ‘holes’ as
will be shown in the last section. It would be very desirable to find a
‘natural’ property which could distinguish the ordinals of the repre-
sentation system within specR1

ðTÞ so as to illuminate their natural-
ness. I consider this to be one of the most important problems in the
area of strong ordinal representation systems. A more thorough
discussion will follow in Section 7.

We will show that under very weak assumptions on T that the
spectrum of T is an initial segment of the ordinals. Let T be a theory
such that T ‘ / implies L 	 / for all R1- and P1-sentences /. We
shall require that T contains a modicum of primitive recursive set
theory in the sense that T contains the theory PRST of Definition 4.2.
In particular, we assume that the function g 7!Lg is provable in T.
Moreover, we shall assume that T ‘ 8a9k � a½k is a limit�. Then the
following holds.

THEOREM 6.2 (Möllerfeld and Rathjen 2002). specR1
ðTÞ is an

ordinal, that is an initial segment of the ordinals.

Proof. The proof makes use of the notion of stable ordinal. For an
introduction to stable ordinals the reader is referred to Barwise’s
textbook (1975). An ordinal g is b-stable if g � b and Lg is a R1-
elementary substructure of Lb.

Set rT :¼ supðspecR1
ðTÞÞ. For each g 2 specR1

ðTÞ we pick a R1-
formula /g such that

T ‘ 9!n/gðnÞ and L 	 /g½g�: ð16Þ

We shall proof, by induction on a < rT, that a 2 specR1
ðTÞ.

For this assume a � specR1
ðTÞ.

For each limit ordinal k 2 specR1
ðTÞ with k > maxðx; aÞ, define

Ak :¼ fa 2 Lk j there is a R1-definition of a in Lk

using parameters < a:g

Let qk be the least ordinal not in Ak. By the proof of Theorem 7.8. in
chap. V of Barwise (1975), we get

THEORIES AND ORDINALS IN PROOF THEORY 735



Ak ¼ Lqk
and qk is the least k-stable ordinal � a: ð17Þ

In actuality, this proof assumes that k is admissible. However,
ruminating on the proof, it turns out that all which is required is that
the predicate x 2 Ld (of x and d) and the constructible ordering <L

are absolute for Lk. Therefore it suffices to assume that k is a limit
> x (for more details see Devlin (1984), II, Theorem 5.2).

Note that a � qk � k.
Case 1: a < qk for some k 2 specR1

ðTÞ, where k is a limit
> maxðx; aÞ.

Then a has a R1-definition in Lk using parameters b1; . . . ;bn < a.
Let wðx; b1; . . . ;bnÞ be the defining formula. Put

hðxÞ :¼
�
Lk	9!nwðn;b1;...;bnÞ ^ x2Lk^

Lk	wðx;b1;...;bnÞ
�
_
�
Lk	:9!nwðn;b1;...;bnÞ ^ x¼k

�
:

h is a R1-formula with parameters k;b1; . . . ; bn all of which are in
specR1

ðTÞ. Using the formulae /k;/b1
; . . . ;/bn

(see (16)), we can re-
write h to an equivalent R1-formula such that T ‘ 9!ghðgÞ. Moreover,
L 	 h½a�. Therefore a 2 specR1

ðTÞ.
Case 2: For all limits k 2 specR1

ðTÞ with k > maxða;xÞ, it holds
a ¼ qk.

By (17), a is k-stable for all such k. Therefore a is rT-stable, as rT is
the limit of all these ordinals. However, from T ‘ 9!nwðnÞ with w R1,
we get LrT

	 9nwðnÞ and hence La 	 9nwðnÞ, which yields
specR1

ðTÞ � a, contradicting a < rT. (
A quick glance at the preceding proof reveals that the proof

utilizes that T is a classical theory at every turn. Therefore one
might expect a different behaviour for intuitionistic set theories. Up
till now, however, no intuitionistic set theory int-T has been found
where specR1

ðint-TÞ contains holes. On the other hand, for several
intuitionistic theories it has been shown that their spectrum yields a
segment like in the classical case. If T is a classical set theory let
int-T be the theory with the same axioms but based on intuitionistic
logic.

THEOREM 6.3. If T denotes any of the theories KPl, KPlr, or KPiw,
then

specR1
ðTÞ ¼ specR1

ðint�TÞ:

Proof. This has been shown by my student Nikolaus Thiel. The
results are presented in his Ph.D. thesis (Thiel 2003). (
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Regarding the previous result a caveat should be entered here as it
might hinge on what notion of ordinal one employs. Theorem 6.3
holds if ordinals are defined as transitive sets whose elements are
transitive as well. Classically such ordinals are linearly ordered by 2
but intuitionistically this is not provable. Therefore it is conceivable
that Theorem 6.3 does no longer hold when one takes a more re-
stricted notion of ordinals which requires them to be linearly ordered
by 2. I consider this a very interesting riddle.

7. RECURSIVELY LARGE ORDINALS AND ORDINAL

REPRESENTATION SYSTEMS

It is probably not widely known that an ordinal analysis of a theory T
not only characterizes the provably recursive ordinals of T but also
provides information about provable sets of higher complexity. For
instance the first T-stable ordinal, rT, that is the first ordinal q such
that all R1 definable ordinals of T are < q can be obtained from an
ordinal analysis of T as well. rT can also be characterized as the first
ordinal which is closed under all 1-functions on ordinals which are
provably total in T (cf. Hinman 1978, VIII), or in the case of sub-
systems of second order arithmetic as the supremum of its provable
D1
2 ordinals. To illustrate these more subtle features by means of a

simple example (which nevertheless encapsulates the generic case) the
last section of this paper introduces an ordinal representation system
that has been employed in the ordinal analysis of the subsystem of
second order arithmetic based on D1

2 comprehension and bar induc-
tion or equivalently the set theory KPi.

7.1. Ordinal Functions Based on a Weakly Inaccessible Cardinal

Recall that KPi is a set theory which originates fromKripke–Platek set
theory and in additionhas an axiomwhich says that any set is contained
in an admissible set. Thus the standard models of KPi in L are the
segments Lj with j being recursively inaccessible. The ordinal analysis
for KPi (cf. Jäger and Pohlers 1982) used an ordinal representation
system built from ordinal functions, so-called collapsing functions,
which have originally been defined with the help of a weakly inacces-
sible cardinal. This subsection expounds on the development of this
particular ordinal representation systemwith an eye towards the role of
cardinals therein. Traditionally the cardinals@a have been namedXa in
proof theory and this tradition will also be adhered to below. Let
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I :¼ ‘‘first weakly inaccessible cardinal’’ ð18Þ
and let ða 7!XaÞa<I enumerate the infinite cardinals below I in
increasing order. Further let

<I :¼ fIg [ fXnþ1 : n < Ig: ð19Þ
Variables j;p will range over <I.

DEFINITION 7.1. An ordinal representation system for the analy-
sis of KPi can be derived from the following functions and Skolem
hulls of ordinals defined by recursion on a:

CIða; bÞ ¼

closure of b [ f0; Ig
under :
þ; ðn 7!xnÞ
ðn 7!XnÞn<I
ðnp #wpðnÞÞn<a

8
>>>><

>>>>:

ð20Þ

wpðaÞ ’ minfq < p : CIða;qÞ \ p ¼ q ^ p 2 CIða; qÞg:
ð21Þ

Note that if q ¼ wpðaÞ, then wpðaÞ < p and ½q;pÞ \ CIða; qÞ ¼ ;, thus
the order-type of the ordinals below p which belong to the Skolem
hull CIða; qÞ is q. In more pictorial terms, q is the ath collapse of p.

LEMMA 7.2. If p 2 CIða; pÞ, then
wpðaÞ is defined; in particular wpðaÞ < p.

Proof. Note first that for a limit ordinal k,

CIða; kÞ ¼
[

n<k

CIða; nÞ

since the right hand side is easily shown to be closed under the clauses
that define CIða; kÞ. We can pick x � g < p such that p 2 CIða; gÞ.
Now define

g0 ¼ supCIða; gÞ \ p ð22Þ
gnþ1 ¼ supCIða; gnÞ \ p

g� ¼ sup
n<x

gn:

Since the cardinality of CIða; gÞ is the same as that of g and therefore
less than p, the regularity of p implies that g0 < p. By repetition of
this argument one obtains gn < p, and consequently g� < p. The
definition of g� then ensures
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CIða; g�Þ \ p ¼
[

n

CIða; gnÞ \ p ¼ g� < p:

Therefore, wpðaÞ < p. (
Let eIþ1 be the least ordinal a > I such that xa ¼ a. The next

definition singles out a subset T ðIÞ of CIðeIþ1; 0Þ which gives rise to an
ordinal representation system, i.e., there is an elementary ordinal
representation system hOR; /; <̂; ŵ; . . .i, so that

hT ðIÞ; <;<;w; . . .i ffi hOR; /; <̂; ŵ; . . .i: ð23Þ
‘‘. . .’’ is supposed to indicate that more structure carries over to the
ordinal representation system.

DEFINITION 7.3 T ðIÞ is defined inductively as follows:

1. 0; I 2 T ðIÞ.
2. If a1; . . . ; an 2 T ðIÞ and a1 � � � � � an, then xa1 þ � � � þ xan 2 T ðIÞ.
3. If a 2 T ðIÞ, 0 < a < I and a < Xa, then Xa 2 T ðIÞ.
4. If a; p 2 T ðIÞ, p 2 CIða;pÞ and a 2 CIða;wpðaÞÞ, then wpðaÞ 2 T ðIÞ.

The side conditions in 7.3.2, 7.3.3 are easily explained by the desire
to have unique representations in T ðIÞ. The requirement
a 2 CIða;wpðaÞÞ in 7.3.4 also serves the purpose of unique represen-
tations (andmore) but is probably a bit harder to explain. The idea here
is that from wpðaÞ one should be able to retrieve the stage (namely a)
where it was generated. This is reflected by a 2 CIða;wpðaÞÞ.
It can be shown that the foregoing definition of T ðIÞ is deterministic,
that is to say every ordinal in T ðIÞ is generated by the inductive
clauses of 7.3 in exactly one way. As a result, every c 2 T ðIÞ has a
unique representation in terms of symbols for 0; I and function
symbols for þ; ða7!XaÞ; ða; p7!wpðaÞÞ. Thus, by taking some primi-
tive recursive (injective) coding function d� � �e on finite sequences of
natural numbers, we can code T ðIÞ as a set of natural numbers as
follows:

‘ðaÞ ¼

d0; 0e if a ¼ 0
d1; 0e if a ¼ I
d2; ‘ða1Þ; � � � ; ‘ðanÞe if a ¼ xa1 þ � � � þ xan

d3; ‘ðbÞe if a ¼ Xb

d4; ‘ðbÞ; ‘ðpÞe if a ¼ wpðbÞ;

8
>>>><

>>>>:

where the distinction by cases refers to the unique representation
of 7.3. With the aid of ‘, the ordinal representation system of (23) can
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be defined by letting OR be the image of ‘ and setting
/ :¼ fð‘ðcÞ; ‘ðdÞÞ : c < d ^ d; c 2 T ðIÞg etc. However, for a proof that
this definition of hOR; /; <̂; ŵ; . . .i in point of fact furnishes an ele-
mentary ordinal representation system, we have to refer to the liter-
ature (cf. Buchholz 1986; Buchholz and Schütte 1988; Rathjen 1994).

7.1.1. Recursively Large Ordinals

The large cardinal hypothesis that I is the first weakly inaccessible
cardinal is outrageously strong when compared with the strength of
KPi. However, it enters the definition procedure of the collapsing
function wI, which is then employed in the shape of terms to ‘name’ a
countable set of ordinals. As one succeeds in establishing recursion
relations for the ordering between those terms, the set of terms gives
rise to an ordinal representation system. It has long been suggested
that, instead, one should be able to interpret the collapsing functions
as operating directly on the recursively large counterparts of those
cardinals. To give an example, the ordinal notations used in the
determination of the ordinals jIDnj for theories of n-iterated inductive
definitions (cf. Buchholz et al. 1981) embody collapsing functions
wX1

; . . . ;wXn
, which are contingent upon the cardinals @1; . . . ;@n. The

conceptual problem here is that the definition procedure of these
functions makes essential use of the set-theoretical universe, whilst
the resulting notation system corresponds to a countable, indeed
recursive ordinal. Feferman wrote (cf. Feferman 1987, p. 436):

It has been suggested that, instead, one should be able to interpret the long hierar-
chies as operating directly on the (Kripke–Platek) admissible number classes sa,
where s1 ¼ xrec

1 . However, no theory of such classes currently available allows one to

‘name’ higher admissibles in the definition of a function and have a given admissible
such as s1 closed under it.

For example, taking such an approach in Definition 7.1 would con-
sist in letting

I :¼ first recursively inaccessible ordinal

and setting <I :¼ fp < I : p admissible; p > xg. The difficulties with
this approach arise with the proof of Lemma 7.2. One wants to show
that, for all a, wIðaÞ < I, but the arguments of the cardinal setting no
longer work here. To get a similar result for a recursively inaccessible
ordinal j one would have to work solely with j-recursive operations.
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In addition, the functions wp : ejþ1 ! p would have to be defined for
admissible ordinals p with x < p < j. In the cardinal setting this
comes down to a simple cardinality argument. To get a similar result
for an admissible p one would have to work exclusively with p-
recursive operations. How this can be accomplished is far from being
clear as the definition of CIða;qÞ for q < p usually refers to higher
admissibles than just p. Notwithstanding that, the admissible ap-
proach is workable as was shown in Rathjen (1993, 1994), Schlüter
(1995). A key idea therein is that the higher admissibles which figure
in the definition of wpðaÞ can be mimicked via names within the
structure Lp in a p-recursive manner.

The drawback of the admissible approach is that it involves quite
horrendous definition procedures and computations, which when
taken as the first approach tend to be at the limit of human tolerance.

On the other hand, the admissible approach provides a natural
semantics for the terms in the ordinal representation system s.
Recalling the notion of good R1-definition from Definition 6.1, it
turns out that all the ordinals of T ðIÞ \ I possess a good R1-definition
in KPi (cf. Rathjen 1994) under the interpretation which takes I to be
the first recursively inaccessible ordinal and lets the functions wp
operate on admissible ordinals p instead of regular cardinals.

Unlike in the case of KP, T ðIÞ \ I only forms a proper subset of
specR1

ðKPiÞ with many ‘holes’.4 To illuminate the nature of the
ordinals in T ðIÞ \ I, it would be desirable to find another property
which distinguishes them among the ordinals of specR1

ðKPiÞ.
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NOTES

1 This contrasts with (Barwise 1975) where Infinity is not included in KP.
2 x ¼ fy 2 a : FðyÞg stands for the D0-formula ð8y 2 xÞ½y 2 a ^ FðyÞ� ^ ð8y 2 aÞ
½FðyÞ ! y 2 x�:
3 This notion is definable in Zermelo–Fraenkel set theory as long as F � Pn for
some n. However, if e.g., F contains all sentences of set theory, then one has to go

beyond Zermelo–Fraenkel set theory.
4 The ordinals of T ðIÞ \ I are cofinal in specR1

ðKPiÞ, though. Letting p0 :¼ wIeIþ1,
one has supðspecR1

ðKPiÞÞ ¼ p0.
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in essays in which a number of related publications are critically examined. Please

send these directly to the Editor-in-Chief of the journal, Dr. John Symons:
jsymons@utep.edu.

Note:

By using the online manuscript submission and review system, it is NOT necessary to

submit the manuscript also in printout + disk. In case you encounter any difficulties
while submitting your manuscript online, please get in touch with the responsible
Editorial Assistant by clicking on ‘‘CONTACT US’’ from the tool bar.

Manuscripts should be submitted to:

www.editorialmanager.com/synt

LaTex

For submission in LaTeX, Springer have developed a Kluwer LaTeX class file, which
can be downloaded from the link below. Use of this class file is highly recommended.
Do not use versions downloaded from other sites. Technical support is available at:

texhelp@springer.com. If you are not familiar with TeX/LaTeX, the class file will be
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of no use to you. In that case, submit your article in a common word processor

format.
www.springeronline.com/authors/jrnlstylefiles

Reviewing Procedure

Synthese follows a double-blind reviewing procedure. Authors are therefore re-

quested not to include their name or affiliation in their submitted papers. Self-
identifying citations and references in the article text should be avoided. Authors
should thus make sure that their names and/or affiliations are NOT mentioned on
any of the manuscript pages. If authors do include their names on submitted papers,

anonymous reviewing cannot be guaranteed.

Manuscript Presentation

The journals language is English. British English or American English spelling and
terminology may be used, but either one should be followed consistently throughout
the article. Manuscripts should be printed or typewritten on A4 or US Letter bond

paper, one side only, leaving adequate margins on all sides to allow reviewers re-
marks. Please double-space all material, including notes and references. Quotations
of more than 40 words should be set off clearly, either by indenting the left-hand

margin or by using a smaller typeface. Use double quotation marks for direct
quotations and single quotation marks for quotations within quotations and for
words or phrases used in a special sense.

Number the pages consecutively with the first page containing:

– running head (shortened title)
– title

Abstract

– Please provide a short abstract of 100 to 250 words. The abstract should not

contain any undefined abbreviations or unspecified references.

Figures and Tables

– Submission of electronic figures

In addition to hard-copy printouts of figures, authors are requested to supply the
electronic versions of figures in either Encapsulated PostScript (EPS) or TIFF
format. Many other formats, e.g., Microsoft Postscript, PiCT (Macintosh) and

WMF (Windows), cannot be used and the hard copy will be scanned instead.
Figures should be saved in separate files without their captions, which should

be included with the text of the article. Files should be named according to DOS
conventions, e.g., figure1.eps. For vector graphics, EPS is the preferred format.

Lines should not be thinner than 0.25pts and in-fill patterns and screens should
have a density of at least 10%. Font-related problems can be avoided by using
standard fonts such as Times Roman and Helvetica. For bitmapped graphics,
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TIFF is the preferred format but EPS is also acceptable. The following resolu-

tions are optimal: black-and-white line figures – 600–1200 dpi; line figures with
some grey or coloured lines – 600 dpi; photographs – 300 dpi; screen dumps –
leave as is. Higher resolutions will not improve output quality but will only

increase file size, which may cause problems with printing; lower resolutions may
compromise output quality. Please try to provide artwork that approximately fits
within the typeset area of the journal. Especially screened originals, i.e. originals

with grey areas, may suffer badly from reduction by more than 10–15%.

– Avoiding problems with EPS graphics
Please always check whether the figures print correctly to a PostScript printer in a
reasonable amount of time. If they do not, simplify your figures or use a different

graphics program.
If EPS export does not produce acceptable output, try to create an EPS file

with the printer driver (see below). This option is unavailable with the Microsoft

driver for Windows NT, so if you run Windows NT, get the Adobe driver from
the Adobe site (www.adobe.com).
If EPS export is not an option, e.g., because you rely on OLE and cannot

create separate files for your graphics, it may help us if you simply provide a

PostScript dump of the entire document.

– How to set up for EPS and Postscript dumps under windows
Create a printer entry specifically for this purpose: install the printer Apple La-
serwriter Plus and specify FILE: as printer port. Each time you send something to

the printer you will be asked for a filename. This file will be the EPS file or
PostScript dump that we can use.
The EPS export option can be found under the PostScript tab. EPS export

should be used only for single-page documents. For printing a document of
several pages, select Optimise for portability instead. The option Download
header with each job should be checked.

– Submission of hard-copy figures

If no electronic versions of figures are available, submit only high-quality artwork
that can be reproduced as is, i.e., without any part having to be redrawn or re-
typeset. The letter size of any text in the figures must be large enough to allow for

reduction. Photographs should be in black-and-white on glossy paper. If a figure
contains colour, make absolutely clear whether it should be printed in black-and-
white or in colour. Figures that are to be printed in black-and-white should not
be submitted in colour. Authors will be charged for reproducing figures in colour.

Each figure and table should be numbered and mentioned in the text. The
approximate position of figures and tables should be indicated in the margin of
the manuscript. On the reverse side of each figure, the name of the (first) author

and the figure number should be written in pencil; the top of the figure should be
clearly indicated. Figures and tables should be placed at the end of the manu-
script following the Reference section. Each figure and table should be accom-

panied by an explanatory legend. The figure legends should be grouped and
placed on a separate page. Figures are not returned to the author unless speci-
fically requested.
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In tables, footnotes are preferable to long explanatory material in either the

heading or body of the table. Such explanatory footnotes, identified by super-
script letters, should be placed immediately below the table.

Section Headings

– First-, second-, third-, and fourth-order headings should be clearly distinguish-
able and numbered. (e.g., 1., 1.1, 1.1.1, 2., 2.1, etc.).

Appendices

– Supplementary material should be collected in an Appendix and placed before
the Notes and Reference sections.

Notes

– Please use endnotes rather than footnotes. Notes should be indicated by con-

secutive superscript numbers in the text and listed at the end of the article before
the References. A source reference note should be indicated by means of an
asterisk after the title. This note should be placed at the bottom of the first page.

Cross-Referencing

– In the text, a reference identified by means of an authors name should be followed
by the date of the reference in parentheses and page number(s) where appro-
priate. When there are more than two authors, only the first authors name should

be mentioned, followed by et al.. In the event that an author cited has had two or
more works published during the same year, the reference, both in the text and in
the reference list, should be identified by a lower case letter like a and b after the

date to distinguish the works.

– Examples:
Winograd (1986, 204)
(Winograd 1986a, b)

(Winograd 1986; Flores et al. 1988)
(Bullen and Bennett 1990)

Acknowledgements

– Acknowledgements of people, grants, funds, etc. should be placed in a separate
section before the References.

References

– References to books, journal articles, articles in collections and conference or

workshop proceedings, and technical reports should be listed at the end of the
article in alphabetical order (see examples below). Articles in preparation or
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articles submitted for publication, unpublished observations, personal commu-

nications, etc. should not be included in the reference list but should only be
mentioned in the article text (e.g., T. Moore, personal communication).

– References to books should include the authors name; year of publication; title;
page numbers where appropriate; publisher; place of publication, in the order

given in the example below.

Krantz, D.H., R.D. Luce, P. Suppes, and A. Tversky: 1971, Foundations of
Measurement, Vol. 2. Academic Press, New York.

– References to articles in an edited collection should include the authors name;

year of publication; article title; editors name; title of collection; first and last
page numbers; publisher; place of publication, in the order given in the example
below.

Hintikka, J.: 1966, A Two-Dimensional Continuum of Inductive Methods, in

J. Hintikka and P. Suppes (eds), Aspects of Inductive Logic, North-Holland,
Amsterdam, pp. 113–32.

– References to articles in periodicals should include the authors name; year of
publication; article title full title of periodical; volume number (issue number

where appropriate); first and last page numbers in the order given in the example
below.

Lewis, D.: 1984, Putnams Paradox, Australasian Journal of Philosophy 62, 221–
236.

– References to technical reports or doctoral dissertations should include the

authors name; year of publication; title of report or dissertation; institution;
location of institution, in the order given in the example below.

Sprites, P., R. Scheines, C. Glymour and C. Meek: 1993, TETRAD II. Doc-
umentation for Version 2.2.

Technical Report, Department of Philosophy, Carnegie Mellon University,

Pittsburgh, PA.

Proofs

Proofs will be sent to the corresponding author by e-mail (if no e-mail address is
available or appears to be out of order, proofs will be sent by regular mail). Your

response, with or without corrections, should be sent within 72 hours. Please do not
make any changes to the PDF file. Minor corrections (+/) 10) should be sent as an
e-mail attachment to: proofscorrection@springer.com.

Always quote the four-letter journal code and article number and the PIPS No. from
your proof in the subject field of your e-mail. Extensive corrections must be clearly

marked on a printout of the PDF file and should be sent by first-class mail (airmail
overseas).
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Offprints

25 offprints of each article will be provided free of charge. Additional offprints (both

hard copies and PDF files) can be ordered by means of an offprint order form
supplied with the proofs.

Page Charges and Colour Figures

No page charges are levied on authors or their institutions. Colour figures are
published at the authors expense only.

Copyright

Authors will be asked, upon acceptance of an article, to transfer copyright of the

article to the Publisher. This will ensure the widest possible dissemination of
information under copyright laws.

Permissions

It is the responsibility of the author to obtain written permission for a quotation

from unpublished material, or for all quotations in excess of 250 words in one extract
or 500 words in total from any work still in copyright, and for the reprinting of
figures, tables or poems from unpublished or copyrighted material.

Springer Open Choice

In addition to the normal publication process (whereby an article is submitted to the

journal and access to that article is granted to customers who have purchased a
subscription), Springer now provides an alternative publishing option: Springer
Open Choice. A Springer Open Choice article receives all the benefits of a regular
subscription-based article, but in addition is made available publicly through

Springers online platform SpringerLink. To publish via Springer Open Choice, upon
acceptance please click on the link below to complete the relevant order form and
provide the required payment information. Payment must be received in full before

publication or articles will publish as regular subscription-model articles. We regret
that Springer Open Choice cannot be ordered for published articles.
www.springeronline.com/openchoice.

Additional Information

Additional Information can be obtained from:

Springer
SYNTHESE

P.O. Box 990
3300 AZ Dordrecht
The Netherlands
Fax: 00 31 (0) 78 6576254
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